Chebyshev functions*

$Mathprof^{\dagger}$

2013-03-21 16:25:10

There are two different functions which are collectively known as the $\it Cheby-shev functions$:

$$\vartheta(x) = \sum_{p \le x} \log p.$$

where the notation used indicates the summation over all positive primes p less than or equal to x, and

$$\psi(x) = \sum_{p \le x} k \log p,$$

where the same summation notation is used and k denotes the unique integer such that $p^k \leq x$ but $p^{k+1} > x$. Heuristically, the first of these two functions measures the number of primes less than x and the second does the same, but weighting each prime in accordance with their logarithmic relationship to x.

Many innocuous results in number theory owe their proof to a relatively simple analysis of the asymptotics of one or both of these functions. For example, the fact that for any n, we have

$$\prod_{p \le n} p < 4^n$$

is equivalent to the statement that $\vartheta(x) < x \log 4$.

A somewhat less innocuous result is that the prime number theorem (i.e., that $\pi(x) \sim \frac{x}{\log x}$) is equivalent to the statement that $\vartheta(x) \sim x$, which in turn, is equivalent to the statement that $\psi(x) \sim x$.

References

[1] Ireland, Kenneth and Rosen, Michael. A Classical Introduction to Modern Number Theory. Springer, 1998.

^{*} $\langle ChebyshevFunctions \rangle$ created: $\langle 2013-03-21 \rangle$ by: $\langle Mathprof \rangle$ version: $\langle 34573 \rangle$ Privacy setting: $\langle 1 \rangle$ $\langle Definition \rangle$ $\langle 11A41 \rangle$

 $^{^{\}dagger}$ This text is available under the Creative Commons Attribution/Share-Alike License 3.0. You can reuse this document or portions thereof only if you do so under terms that are compatible with the CC-BY-SA license.

 $[2]\,$ Nathanson, Melvyn B. Elementary Methods in Number Theory. Springer, 2000.