Two harmonic functions u and v from an open subset A of $\mathbb{R} \times \mathbb{R}$ to \mathbb{R}, which satisfy the Cauchy-Riemann equations
\[u_x = v_y, \quad u_y = -v_x, \tag{1} \]
are the harmonic conjugate functions of each other.

- The relationship between u and v has a simple geometric meaning: Let’s determine the slopes of the constant-value curves $u(x, y) = a$ and $v(x, y) = b$ in any point (x, y) by differentiating these equations. The first gives $u_x dx + u_y dy = 0$, or
\[\frac{dy}{dx}^{(u)} = -\frac{u_x}{u_y} = \tan \alpha, \]
and the second similarly
\[\frac{dy}{dx}^{(v)} = -\frac{v_x}{v_y} \]
but this is, by virtue of (1), equal to
\[\frac{u_y}{u_x} = -\frac{1}{\tan \alpha}. \]
Thus, by the condition of orthogonality, the curves intersect at right angles in every point.

- If one of u and v is known, then the other may be determined with (1): When e.g. the function u is known, we need only to calculate the line integral
\[v(x, y) = \int_{(x_0, y_0)}^{(x, y)} (-u_y \, dx + u_x \, dy) \]
along any path connecting (x_0, y_0) and (x, y) in A. The result is the harmonic conjugate v of u, unique up to a real addend if A is simply connected.
• It follows from the preceding, that every harmonic function has a harmonic conjugate function.

• The real part and the imaginary part of a holomorphic function are always the harmonic conjugate functions of each other.

Example. $\sin x \cosh y$ and $\cos x \sinh y$ are harmonic conjugates of each other.