Let G be a non-abelian group with center $Z(G)$. Associate a graph Γ_G with G whose vertices are the non-central elements $G \setminus Z(G)$ and whose edges join those vertices $x, y \in G \setminus Z(G)$ for which $xy \neq yx$. Then Γ_G is said to be the non-commuting graph of G. The non-commuting graph Γ_G was first considered by Paul Erdős, when he posed the following problem in 1975 [B.H. Neumann, A problem of Paul Erdős on groups, J. Austral. Math. Soc. Ser. A 21 (1976), 467-472]: Let G be a group whose non-commuting graph has no infinite complete subgraph. Is it true that there is a finite bound on the cardinalities of complete subgraphs of Γ_G?

B. H. Neumann answered positively Erdős’ question.

The non-commuting graph Γ_G of a non-abelian group G is always connected with diameter 2 and girth 3. It is also Hamiltonian. Γ_G is planar if and only if G is isomorphic to the symmetric group S_3, or the dihedral group D_8 of order 8 or the quaternion group Q_8 of order 8.

Examples
Symmetric group S_3

The symmetric group S_3 is the smallest non-abelian group. In cycle notation, we have $S_3 = \{(), (12), (13), (23), (123), (132)\}$.

The center is trivial: $Z(S_3) = \{()\}$. The non-commuting graph in Figure ?? contains all possible edges except one.
Figure 1: Non-commuting graph of the symmetric group S_3

Figure 2: Non-commuting graph of the octic group

Octic group

The dihedral group D_8, generally known as the octic group, is the symmetry group of the square. If you label the vertices of the square from 1 to 4 going along the edges, the octic group may be seen as a subgroup of the symmetric group S_4:

$$D_8 := \{((), (13), (24), (12)(34), (13)(24), (14)(23), (1234), (1432))\}.$$

So the octic group has order 8 (hence its name), and its center consists of the identity element and the simultaneous flip around both diagonals $(13)(24)$. Its non-commuting graph is given in Figure ??.