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Reflection across a line of given angle

Let x,y be perpendicular unit vectors in the plane. Suppose we want to reflect
vectors (perpendicularly) over a line that makes an angle θ with the positive x
axis. More precisely, we are given a direction direction vector u = cos θ x+sin θ y
for the line of reflection. A unit vector perpendicular to u is v = − sin θ x +
cos θ y (as is easily checked). Then to reflect an arbitrary vector w, we write w
in terms of its components in the u,v axes: w = au + bv, and the result of the
reflection is to be w′ = au− bv.

We compute the matrix for such a reflection in the original x, y coordinates.
Denote the reflection by T . By the matrix change-of-coordinates formula,

we have

[T ]xy = [I]xyuv [T ]uv [I]uvxy ,

where [T ]xy and [T ]uv denote the matrix representing T with respect to the
x, y and u, v coordinates respectively; [I]xyuv is the matrix that changes from u, v
coordinates to x, y coordinates, and [I]uvxy is the matrix that changes coordinates
the other way.

The three matrices on the right-hand side are all easily derived from the
description we gave for the reflection T :

[I]xyuv =

[
cos θ − sin θ
sin θ cos θ

]
, [T ]uv =

[
1 0
0 −1

]
, [I]uvxy =

(
[I]xyuv

)−1
=

[
cos θ sin θ
− sin θ cos θ

]
.

Computing the matrix product (with the help of the double angle identity)
yields:

[T ]xy =

[
cos 2θ sin 2θ
sin 2θ − cos 2θ

]
. (1)
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For the information of the reader, we note that there are other ways of
“deriving” this result. One is by the use of a diagram, which would show that
(1, 0) gets reflected to (cos 2θ, sin 2θ) and (0, 1) gets reflected to (sin 2θ,− cos 2θ).
Another way is to observe that we can rotate an arbitrary mirror line onto the x-
axis, then reflect across the x-axis, and rotate back. (The matrix product [T ]xy
can be seen as operating this way.) We took neither of these two approaches,
because to justify them rigorously takes a bit of work, that is avoided by the
pure linear algebra approach.

Note also that [T ]uv and [T ]xy are orthogonal matrices, with determinant
−1, as expected.

Reflection across a line of given direction vector

Suppose instead of being given an angle θ, we are given the unit direction vector
u to reflect the vector w. We can derive the matrix for the reflection directly,
without involving any trigonometric functions.

In the decomposition w = au + bv, we note that b = w · v. Therefore

w′ = (au + bv)− 2bv = w − 2(w · v)v .

(In fact, this is the formula used in the source code to draw the diagram in this
entry.) To derive the matrix with respect to x, y coordinates, we resort to a
trick:

w′ = Iw − 2v(w · v) = Iw − 2v(vtrw) = Iw − 2(vvtr)w .

Therefore the matrix of the transformation is

I − 2vvtr =

[
u2x − u2y 2uxuy
2uxuy u2y − u2x

]
, u = (ux, uy)tr , v = (−uy, ux)tr .

If u was not a unit vector to begin with, it of course suffices to divide by its
magnitude before proceeding. Taking this into account, we obtain the following
matrix for a reflection about a line with direction u:

1

u2x + u2y

[
u2x − u2y 2uxuy
2uxuy u2y − u2x

]
. (2)

Notice that if we put ux = cos θ and uy = sin θ in matrix (??), we get matrix
(??), as it should be.

Reflection across a line of given slope

There is another form for the matrix (??). We set m = tan θ to be the slope of
the line of reflection and use the identities:

cos2 θ =
1

tan2 θ + 1
=

1

m2 + 1

cos 2θ = 2 cos2 θ − 1

sin 2θ = 2 sin θ cos θ = 2 tan θ cos2 θ = 2m cos2 θ .
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When these equations are substituted in matrix (??), we obtain an alternate
expression for it in terms of m only:

1

m2 + 1

[
1−m2 2m

2m m2 − 1

]
. (3)

Thus we have derived the matrix for a reflection about a line of slope m.
Alternatively, we could have also substituted ux = 1 and uy = m in matrix

(??) to arrive at the same result.

Topology of reflection matrices

Of course, formula (??) does not work literally when m = ±∞ (the line is
vertical). However, that case may be derived by taking the limit |m| → ∞ —
this limit operation can be justified by considerations of the topology of the
space of two-dimensional reflection matrices.

What is this topology? It is the one-dimensional projective plane RP1, or
simply, the “real projective line”. It is formed by taking the circle, and iden-
tifying opposite points, so that each pair of opposite points specify a unique
mirror line of reflection in R2. Formula (??) is a parameterization of RP1. Note
that (??) involves the quantity 2θ, not θ, because for a point (cos θ, sin θ) on
the circle, its opposite point (cos(θ+ π), sin(θ+ π)) specify the same reflection,
so formula (??) has to be invariant when θ is replaced by θ + π.

But (??) might as well be written

[T ]xy =

[
cosφ sinφ
sinφ − cosφ

]
. (4)

where φ = 2θ. For this parameterization of RP 1 to be one-to-one, φ can range
over interval (0, 2π), and the endpoints at φ = 0, 2π overlap just as for a circle,
without identifying pairs of opposite points. What does this mean? It is the
fact that RP1 is homeomorphic to the circle S1.

The real projective line RP1 is also the one-point compactification of R (i.e.
RP1 = R ∪ {∞}), as shown by formula (??); the number m = ∞ corresponds
to a reflection across the vertical axis. Note that this “∞” is not the same as
the usual ±∞, because here −∞ and ∞ are actually the same number, both
representing the slope of a vertical line.
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