We apply the martingale convergence theorem to prove the Radon-Nikodym theorem, which states that if μ and ν are σ-finite measures on a measurable space (Ω, \mathcal{F}) and ν is absolutely continuous with respect to μ then there exists a non-negative and measurable $f : \Omega \to \mathbb{R}$ such that $\nu(A) = \int_A f \, d\mu$ for all measurable sets A.

As any σ-finite measure is equivalent to a probability measure, it is enough to prove the result in the case where μ and ν are probability measures. Furthermore, by the Jordan decomposition, the result generalizes to the case where ν is a signed measure. So, we just need to prove the following.

Theorem (Radon-Nikodym). Let P and Q be probability measures on the measurable space (Ω, \mathcal{F}), such that Q is absolutely continuous with respect to P. Then, there exists a non-negative random variable X such that $E_P[X] = 1$ and $Q(A) = E_P[1_A X]$ for every $A \in \mathcal{F}$.

Here, X is called the Radon-Nikodym derivative of Q with respect to P.

More generally, for any sub-σ-algebra \mathcal{G} of \mathcal{F} we can restrict the measures P and Q to \mathcal{G} and ask if the Radon-Nikodym derivative of $Q|_G$ with respect to $P|_G$ exists. If it does we shall denote it by X_G, which by definition is a non-negative \mathcal{G}-measurable random variable satisfying $Q(A) = E_P[1_A X_G]$ for all $A \in \mathcal{G}$.

We note that if X_G does exist, then it is uniquely defined (P-almost everywhere). Suppose that \hat{X}_G also satisfied the required properties, then

$$E_P[\max(X_G - \hat{X}_G, 0)] = E_P[X_G 1_{\{X_G > \hat{X}_G\}}] - E_P[\hat{X}_G 1_{\{X_G > \hat{X}_G\}}] = 0$$

so $X_G \leq \hat{X}_G$ almost surely. Similarly, $\hat{X}_G \leq X_G$ and therefore $\hat{X}_G = X_G$ (almost surely).

First, the easy case. For a finite σ-algebra, the Radon-Nikodym derivative can be written out explicitly.

*({MartingaleProofOfTheRadonNikodymTheorem} created: 2013-03-2 by: {gel} version: ⟨4129⟩ Privacy setting: ⟨1⟩ {Proof} ⟨60G12⟩ ⟨28A15⟩

†This text is available under the Creative Commons Attribution/Share-Alike License 3.0. You can reuse this document or portions thereof only if you do so under terms that are compatible with the CC-BY-SA license.
Lemma 1. If \(\mathcal{G} \) is a finite sub-\(\sigma \)-algebra of \(\mathcal{F} \) then the Radon-Nikodym derivative \(X_\mathcal{G} \) exists.

Proof. Let \(A_1, A_2, \ldots, A_n \) be the minimal non-empty elements of \(\mathcal{G} \). These are pairwise disjoint subsets of \(\Omega \) such that every set in \(\mathcal{G} \) is a union of a subcollection of the \(A_k \). Set

\[
X_\mathcal{G} = \sum_{k=1}^{n} \frac{Q(A_k)}{P(A_k)} 1_{A_k}
\]

Note that whenever \(P(A_k) = 0 \) then \(Q(A_k) = 0 \), and we adopt the convention that \(\frac{0}{0} = 0 \). Clearly, \(X_\mathcal{G} \) is \(\mathcal{G} \)-measurable, and

\[
E_P[1_{A_k} X_\mathcal{G}] = \frac{Q(A_k)}{P(A_k)} E_P[1_{A_k}] + \sum_{j \neq k} \frac{Q(A_j)}{P(A_j)} E_P[1_{A_k \cap A_j}]
\]

\[
= Q(A_k).
\]

Here, we have used \(E_P[1_{A_k}] = P(A_k) \) and \(1_{A_k \cap A_j} = 0 \). By linearity, this equality remains true if both sides are replaced by any union of the \(A_k \), and therefore \(X_\mathcal{G} \) is the required Radon-Nikodym derivative.

Next, martingale convergence is used to prove the existence of the Radon-Nikodym derivative in the case where the \(\sigma \)-algebra \(\mathcal{G} \) is separable. By separable, we mean that there is a countable sequence of sets \(A_1, A_2, \ldots \) generating \(\mathcal{G} \). Note that if we let \(\mathcal{G}_n \) be the \(\sigma \)-algebra generated by \(A_1, A_2, \ldots, A_n \), then \(\mathcal{G}_n \) is an increasing sequence of finite sub-\(\sigma \)-algebras such that \(\bigcup_n \mathcal{G}_n \) generates \(\mathcal{G} \). The following result is general enough to apply in many useful cases, such as with the Boral \(\sigma \)-algebra on \(\mathbb{R}^n \).

Lemma 2. Let \(\mathcal{G} \) be a separable sub-\(\sigma \)-algebra of \(\mathcal{F} \). Then, the Radon-Nikodym derivative \(X_\mathcal{G} \) exists. If furthermore, \(\mathcal{G}_n \) is an increasing sequence of finite \(\sigma \)-algebras satisfying \(\mathcal{G} = \sigma(\bigcup_n \mathcal{G}_n) \) then \(E_P[|X_\mathcal{G} - X_{\mathcal{G}_n}|] \to 0 \) as \(n \to \infty \).

Proof. Let us set \(X_n \equiv X_{\mathcal{G}_n} \). If \(m < n \) then the conditional expectation \(E_P[X_n | \mathcal{G}_m] \) is \(\mathcal{G}_m \)-measurable, and for every \(A \in \mathcal{G}_m \),

\[
E_P[1_A E_P[X_n | \mathcal{G}_m]] = E_P[1_A X_n] = Q(A).
\]

This equality just uses the definition of the conditional expectation and then the definition of \(X_n \) as the Radon-Nikodym derivative restricted to \(\mathcal{G}_n \). So, \(E_P[X_n | \mathcal{G}_m] \) is the Radon-Nikodym derivative restricted to \(\mathcal{G}_m \), and equals \(X_m \) (almost-surely).

Therefore, \(X_n \) is a martingale and the martingale convergence theorem implies that the limit

\[
X_\mathcal{G} = \lim_{n \to \infty} X_n
\]

exists almost surely. We now show that the sequence \(X_n \) is uniformly integrable. Choose any \(\epsilon > 0 \). As \(Q \) is absolutely continuous with respect to \(P \), there exists
a $\delta > 0$ such that $Q(A) < \epsilon$ whenever $P(A) < \delta$. Using

$$P(X_n > K) = E_P[1_{\{X_n > K\}}] \leq E_P\left(\frac{X_n}{K}\right) = \frac{1}{K}$$

we see that $P(X_n > K) < \delta$ whenever $K > \delta^{-1}$ and, therefore, $Q(X_n > K) < \epsilon$. So

$$E_P[X_n 1_{\{X_n > K\}}] = Q(X_n > K) < \epsilon$$

for every n, showing that X_n is a uniformly integrable sequence with respect to P. Therefore, convergence in (π-system, π-system, π-system) is a Dynkin system containing the π-system $\bigcup_n \mathcal{G}_n$ so, by Dynkin’s lemma, is satisfied for every $A \in \sigma(\bigcup_n \mathcal{G}_n) = \mathcal{G}$ and, by definition, $X_\mathcal{G}$ is the Radon-Nikodym derivative restricted to \mathcal{G}.

Finally, by approximating by finite σ-algebras we can prove the Radon-Nikodym theorem for arbitrary inseparable σ-algebras \mathcal{F}.

Proof of the Radon-Nikodym theorem:

First, we use contradiction to show that for any $\epsilon > 0$ there exists a finite σ-algebra $\mathcal{G} \subseteq \mathcal{F}$ satisfying $E_P[|X_\mathcal{G} - X_H|] < \epsilon$ for every finite σ-algebra H with $\mathcal{G} \subseteq H \subseteq F$. If this were not the case, then by induction we could find an increasing sequence of finite σ-algebras of \mathcal{F} satisfying $E_P[|X_{\mathcal{G}_n} - X_{\mathcal{G}_{n+1}}|] \geq \epsilon$. However, letting $\mathcal{G} = \sigma(\bigcup_n \mathcal{G}_n)$, Lemma ?? shows that $X_\mathcal{G}$ exists and

$$\epsilon \leq \lim_{n \to \infty} E_P[|X_{\mathcal{G}_n} - X_{\mathcal{G}_{n+1}}|] \leq \lim_{n \to \infty} E_P[|X_{\mathcal{G}_n} - X_\mathcal{G}|] + \lim_{n \to \infty} E_P[|X_{\mathcal{G}_{n+1}} - X_\mathcal{G}|] = 0$$

—a contradiction.

So, there exists a sequence of finite σ-algebras \mathcal{G}_n of \mathcal{F} such that $E_P[|X_{\mathcal{G}_n} - X_\mathcal{H}|] < 2^{-n}$ for every finite σ-algebra \mathcal{H} of \mathcal{F} containing \mathcal{G}_n. Let \mathcal{G} be the (separable) σ-algebra generated by $\bigcup_n \mathcal{G}_n$, and set $\mathcal{G}_n = \sigma(\bigcup_{k=1}^n \mathcal{G}_k)$. By Lemma ??, the Radon-Nikodym derivative restricted to \mathcal{G}, $X_\mathcal{G}$, exists, and we show that it is the required derivative of Q with respect to P.

Choose any set $A \in \mathcal{F}$ and let \mathcal{H}_n be the (finite) σ-algebra generated by $\mathcal{G}_n \cup \{A\}$. Then, $X_{\mathcal{H}_n}$ exists and satisfies $E_P[X_{\mathcal{H}_n} 1_A] = Q(A)$ and,

$$|E_P[X_\mathcal{G} 1_A] - Q(A)| = \lim_{n \to \infty} |E_P[X_{\mathcal{G}_n} 1_A] - Q(A)|$$

$$= \lim_{n \to \infty} |E_P[X_{\mathcal{G}_n} 1_A] - E_P[X_{\mathcal{H}_n} 1_A]|$$

$$\leq \lim_{n \to \infty} E_P[|X_{\mathcal{G}_n} - X_{\mathcal{H}_n}|] + \lim_{n \to \infty} E_P[|X_{\mathcal{H}_n} - X_{\mathcal{G}_n}|]$$

$$\leq \lim_{n \to \infty} (2^{-n} + 2^{-n}) = 0.$$

So, $E_P[X_\mathcal{G} 1_A] = Q(A)$ as required.
References