Let Σ be an alphabet, and u, v words over Σ. An insertion of u into v is a word of the form $v_1u_1v_2$, where $v = v_1v_2$. The concatenation of two words is just a special case of insertion. Also, if w is an insertion of u into v, then v is a deletion of u from w.

The insertion of u into v is the set of all insertions of v into u, and is denoted by $v \triangleright u$.

The notion of insertion can be extended to languages. Let L_1, L_2 be two languages over Σ. The insertion of L_1 into L_2, denoted by $L_1 \triangleright L_2$, is the set of all insertions of words in L_1 into words in L_2. In other words,

$$L_1 \triangleright L_2 = \bigcup\{u \triangleright v \mid u \in L_1, v \in L_2\}.$$

So $u \triangleright v = \{u\} \triangleright \{v\}$.

A language L is said to be insertion closed if $L \triangleright L \subseteq L$. Clearly Σ^* is insertion closed, and arbitrary intersection of insertion closed languages is insertion closed. Given a language L, the insertion closure of L, denoted by $\text{Ins}(L)$, is the smallest insertion closed language containing L. It is clear that $\text{Ins}(L)$ exists and is unique.

More to come...

The concept of insertion can be generalized. Instead of the insertion of u into v taking place in one location in v, the insertion can take place in several locations, provided that u must also be broken up into pieces so that each individual piece goes into each inserting location. More precisely, given a positive integer k, a k-insertion of u into v is a word of the form

$$v_1u_1 \cdots v_ku_kv_{k+1}$$

where $u = u_1 \cdots u_k$ and $v = v_1 \cdots v_{k+1}$. So an insertion is just a 1-insertion. The k-insertion of u into v is the set of all k-insertions of u into v, and is denoted by $u \triangleright^{[k]} v$. Clearly $\triangleright^{[1]} = \triangleright$.

Example. Let $\Sigma = \{a, b\}$, and $u = aba$, $v = bab$, and $w = bababa$. Then
• w is an insertion of u into v, as well as an insertion of v into u, for $w = vu\lambda = \lambda vu$.

• w is also a 2-insertion of u into v:

 – the decompositions $u = (ab)(a)$ and $v = (b)(ab)\lambda$

 – or the decompositions $u = \lambda u$ and $v = \lambda v\lambda$

 produce $(b)(ab)(ab)\lambda = \lambda vu\lambda = w$.

• Finally, w is also a 2-insertion of v into u, as the decompositions $u = \lambda u\lambda$ and $v = v\lambda$ produce $\lambda vu\lambda\lambda = w$.

• $u \triangleright v = \{abab, babaab, baabab, bababa\}$.

From this example, we observe that a k-insertion is a $(k + 1)$-insertion, and every k-insertion of u into v is a $(k + 1)$-insertion of v into u. As a result,

$$u \triangleright [k] v \subseteq (u \triangleright [k+1] v) \cap (v \triangleright [k+1] u).$$

As before, given languages L_1 and L_2, the k-insertion of L_1 into L_2, denoted by $L_1 \triangleright [k] L_2$, is the union of all $u \triangleright [k] v$, where $u \in L_1$ and $v \in L_2$.

Remark. Some closure properties regarding insertions: let \mathcal{R} be the family of regular languages, and \mathcal{F} the family of context-free languages. Then \mathcal{R} is closed under $\triangleright[k]$, for each positive integer k. \mathcal{F} is closed $\triangleright[k]$ only when $k = 1$. If $L_1 \in \mathcal{R}$ and $L_2 \in \mathcal{F}$, then $L_1 \triangleright[k] L_2$ and $L_2 \triangleright[k] L_1$ are both in \mathcal{F}. The proofs of these closure properties can be found in the reference.

References