limit points of uncountable subsets of \mathbb{R}^{n^*}

$joking^\dagger$

2013-03-22 3:19:04

Proposition. Let \mathbb{R}^n be an n-dimensional, real normed space and let $A \subseteq \mathbb{R}^n$. If A is uncountable, then there exists limit point of A in \mathbb{R}^n.

Proof. For any $k \in \mathbb{N}$ let

$$B_k = \{ v \in \mathbb{R}^n \mid ||v|| \leq k \},$$

i.e. B_k is a closed ball centered in 0 with radius k. Assume, that for any k the set

$$V_k = B_k \cap A$$

is finite. Then $\bigcup V_k = A$ would be at most countable. Contradiction, since A is uncountable. Thus, there exists $k_0 \in \mathbb{N}$ such that V_{k_0} is infinite. But $V_{k_0} \subseteq B_{k_0}$ and since B_{k_0} is compact (and V_{k_0} is infinite), then there exists limit point of V_{k_0} in \mathbb{R}^n. This completes the proof. \Box

Corollary. If $A \subseteq \mathbb{R}^n$ is uncountable, then there exist infinitely many limit points of A in \mathbb{R}^n.

Proof. Assume, that there are finitely many limit points of A, namely $x_1, \ldots, x_k \in \mathbb{R}^n$. For $\varepsilon > 0$ define

$$A_\varepsilon = \{ v \in \mathbb{R}^n \mid \forall i \, ||v - x_i|| > \varepsilon \}.$$

Briefly speaking, A_ε is a complement of a union of closed balls centered at x_i with radii ε. Of course $A_\varepsilon \neq \emptyset$ since there are finitely many limit points. Let

$$V_\varepsilon = A \cap A_\varepsilon.$$

Assume, that V_ε is countable for every ε. Then

$$A \subseteq \bigcup_{n \in \mathbb{N}} V_{1/n} \cup \{ x_1, \ldots, x_k \}$$

would be at most countable (of course under assumption of Axiom of Choice). Contradiction. Thus, there is $\gamma > 0$ such that V_γ is uncountable. Then (due to proposition) there is a limit point $x' \in \mathbb{R}^n$ of V_γ. Note, that

$$x' \in \overline{V_\gamma} \subseteq V_\gamma.'$$

†This text is available under the Creative Commons Attribution/Share-Alike License 3.0. You can reuse this document or portions thereof only if you do so under terms that are compatible with the CC-BY-SA license.
for some $0 < \gamma' < \gamma$. Thus x' is different from any x_i. Contradiction, since x' is also a limit point of A. □