Theorem 1. If F, G are equivalent integral binary quadratic forms, then F and G represent the same set of integers.

Proof. Write $G(x, y) = F(\alpha x + \beta y, \gamma x + \delta y)$ where
\[
\det \begin{pmatrix} \alpha & \gamma \\ \beta & \delta \end{pmatrix} = \pm 1
\]
Then $m = G(r, s) \Rightarrow m = F(\alpha r + \beta s, \gamma r + \delta s)$, so if G represents m, so does F. Since the matrix has determinant 1, it is invertible and its inverse is another integer matrix, so the reverse statement follows as well. \hfill \Box

Lemma 2. F properly represents an integer m if and only if F is properly equivalent to a form $mx^2 + Bxy + Cy^2$.

Proof. \Leftarrow: It is obvious by the above that F represents m; the problem is to show that it represents m properly. Write $G(x, y) = mx^2 + Bxy + Cy^2$; then $G(x, y) = F(\alpha x + \beta y, \gamma x + \delta y)$, where $\alpha \delta - \beta \gamma = 1$. Then $m = G(1, 0) = F(\alpha, \gamma)$. But clearly $(\alpha, \gamma) = 1$ since otherwise we cannot have $\alpha \delta - \beta \gamma = 1$. So F represents m properly.

\Rightarrow: Write $F(p, q) = m$, where $(p, q) = 1$. Since $(p, q) = 1$, we can find integers r, s such that $ps - qr = 1$, and then
\[
F(px + ry, qx + sy) = a(px + ry)^2 + b(px + ry)(qx + sy) + c(qx + sy)^2
\]
\[
= (ap^2 + bpq + cq^2)x^2 + (2apr + bps + bqr + 2cqs)xy + (ar^2 + brs + cs^2)y^2
\]
\[
= F(p, q)x^2 + (2apr + bps + bqr + 2cqs)xy + F(r, s)y^2 = mx^2 + Bxy + Cy^2
\]
\hfill \Box
Definition 1. If F is a binary quadratic form, its discriminant, $\Delta(F)$ is b^2-4ac.

Note that $\Delta(F)$ is always either congruent to 0 or 1 mod 4, and that b is even (odd) exactly when $\Delta(F) \equiv 0(1) \pmod{4}$.

Theorem 3. If F,G are equivalent integral quadratic forms, then $\Delta(F) = \Delta(G)$.

Proof. For any form F, define

$$M_F = \begin{pmatrix} 2a & b \\ b & 2c \end{pmatrix}$$

Then

$$2F(x,y) = (x\ y)M_F \begin{pmatrix} x \\ y \end{pmatrix}$$

Note further that $\Delta(F) = -\det(M_F)$.

Now in our particular case, if $G(x,y) = F(\alpha x + \beta y, \gamma x + \delta y)$, then

$$2G(x,y) = (\alpha x + \beta y \ \gamma x + \delta y)M_F \begin{pmatrix} \alpha \
\beta \\
\gamma \\
\delta \end{pmatrix} = (x\ y)M_F \begin{pmatrix} \alpha & \beta \\
\gamma & \delta \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

Hence

$$M_G = \begin{pmatrix} \alpha & \gamma \\
\beta & \delta \end{pmatrix}M_F \begin{pmatrix} \alpha & \beta \\
\gamma & \delta \end{pmatrix}$$

But $\Delta(F) = -\det(M_F)$, so since $\det \begin{pmatrix} \alpha & \beta \\
\gamma & \delta \end{pmatrix} = \det \begin{pmatrix} \alpha & \beta \\
\gamma & \delta \end{pmatrix} = \pm 1$,

$$\Delta(G) = -\det(M_G) = -\det \begin{pmatrix} \alpha & \gamma \\
\beta & \delta \end{pmatrix} \det(M_F) \det \begin{pmatrix} \alpha & \beta \\
\gamma & \delta \end{pmatrix} = -\det(M_F) = \Delta(F)$$

\[\square\]

Note that this proof shows that applying a set of transformations amount to multiplying by the transform matrix on the left and its transpose on the right.

Example: In the previous example, note that $\Delta(F) = 1 - 4 \cdot 1 \cdot 6 = -23$, and $\Delta(G) = 51^2 - 4 \cdot 82 \cdot 8 = 2601 - 2624 = -23$.

The converse of this theorem is not true - that is, there are forms of the same discriminant that represent different numbers. For example, $x^2 + 5y^2$ and $2x^2 + 2xy + 3y^2$ both have discriminant -20, yet the second form represents 2 while the first clearly does not. However, equivalence classes of forms under arbitrary (proper or improper) equivalence represent disjoint sets of primes:

Theorem 4. Let p be an odd prime. Suppose F,G both represent p and $\Delta(F) = \Delta(G)$. Then F and G are equivalent (but perhaps not properly equivalent).
Proof. Since \(p \) is prime, \(F \) obviously represents \(p \) properly. So \(F \sim px^2 + bxy + cy^2 \). Note that the transformation \((x, y) \mapsto (x + dy, y)\) results in a form whose middle term is \(2pd + b \), so by an appropriate choice of \(d \) we can arrange that \(-p < b \leq p \). Similarly, \(G \sim px^2 + b'xy + c'y^2 \) with \(-p < b' \leq p \). Note also that since \(b^2 - 4pc = b'^2 - 4pc' \), it follows that \(b \equiv b' \pmod{2} \) (i.e. \(b, b' \) have the same parity).

Since \(\Delta(F) = \Delta(G) \), we see that \(b^2 - 4pc = b'^2 - 4pc' \iff b^2 \equiv b'^2 \pmod{p} \iff b \equiv \pm b' \pmod{p} \), so \(b = \pm b' + kp \) for some \(k \). Since \(b, b' \) have the same parity and \(p \) is odd, \(k \) is even; since \(-p < b, b' \leq p \), \(k = 0 \) (since otherwise \(b, b' \) would be separated by at least \(2p \), which is impossible).

We are left with two cases. If \(b = b' \), then \(\Delta(F) = \Delta(G) \) implies that \(c = c' \) and hence \(F \sim G \). If \(b = -b' \), then again \(\Delta(F) = \Delta(G) \) implies that \(c = c' \).

Then \(F \) and \(G \) are equivalent via the transformation \((x, y) \mapsto (x, -y)\). \(\square \)

Note that \(F(x, y) = ax^2 + bxy + cy^2 \) and \(G(x, y) = ax^2 - bxy + cy^2 \) are always improperly equivalent via the transformation \((x, y) \mapsto (x, -y)\). They are sometimes properly equivalent, and sometimes not. For example, \(2x^2 + 2xy + 3y^2 \) and \(2x^2 - 2xy + 3y^2 \) are properly equivalent while \(3x^2 + 2xy + 5y^2 \) and \(3x^2 - 2xy + 5y^2 \) are not. (See the article on reduced integral binary quadratic forms for details).

In summary, we have proved the following:

\[
F, G \text{ equivalent } \Rightarrow F, G \text{ represent the same set of integers} \\
F, G \text{ equivalent } \Rightarrow \Delta(F) = \Delta(G) \\
\Delta(F) = \Delta(G) \text{ and } F, G \text{ both represent some odd prime } p \Rightarrow F \text{ and } G \text{ are equivalent}
\]

We conclude with the following lemma and corollary, which provide concrete criteria for when an integer is representable by a class of forms.

Lemma 5. If \(D \equiv 0, 1 \pmod{4} \) is an integer, and \(m \) is an odd integer relatively prime to \(D \), then \(m \) is properly represented by a primitive form of discriminant \(D \) if and only if \(D \) is a quadratic residue \(\text{mod } m \).

Proof. If \(F(x, y) \) properly represents \(m \), then by the preceding lemma, we may assume that \(F(x, y) = mx^2 + bxy + cy^2 \). Then \(D = b^2 - 4mc \), being the discriminant of \(F \), so that \(D \equiv b^2 \pmod{D} \). Conversely, if \(D \equiv b^2 \pmod{D} \), we may assume \(D \equiv b \pmod{2} \) (if they have different parities, replace \(b \) by \(b + m \); since \(m \) is odd, the condition now holds and \(D \equiv (b + m)^2 \pmod{D} \) as well). Since \(D \equiv 0, 1 \pmod{4} \), it follows that \(D \equiv b^2 \pmod{4} \) and thus \(D \equiv b^2 \pmod{4m} \). Hence \(D = b^2 - 4mc \) for some integer \(c \). But then \(mx^2 + bxy + cy^2 \) represents \(m \) and has discriminant \(D \); it is primitive since \(\gcd(m, b) = \gcd(m, D) = 1 \). \(\square \)

Corollary 6. Let \(n \) be an integer, and \(p \) an odd prime not dividing \(n \). Then \(\left(\frac{-n}{p} \right) = 1 \) if and only if \(p \) is represented by a primitive form of discriminant \(-4n \).\]
Proof. By the preceding lemma, \(p \) is represented by a primitive form of discriminant \(-4n\) if and only if

\[
1 = \left(\frac{-4n}{p} \right) = \left(\frac{-n}{p} \right)
\]

\[\square\]