subgroup of a group defines an equivalence relation on the group, proof that a


Let H be a subgroupMathworldPlanetmathPlanetmath of G. Then

abab-1H

defines an equivalence relationMathworldPlanetmath in G.

Proof.

We need to show that the relationMathworldPlanetmathPlanetmath is reflexiveMathworldPlanetmathPlanetmath, symmetric and transitiveMathworldPlanetmathPlanetmathPlanetmathPlanetmath.

  1. 1.

    Reflexive: aa-1=eH therefore aa.

  2. 2.

    Symmetric: We have

    ab ab-1H
    (ab-1)-1H
    ba-1H
    ba
  3. 3.

    Transitive: If ab and bc then we have that

    ab-1H,andbc-1H

    but then

    (ab-1)(bc-1)H

    which gives

    ac-1H

    that is, ac.

Title subgroup of a group defines an equivalence relation on the group, proof that a
Canonical name SubgroupOfAGroupDefinesAnEquivalenceRelationOnTheGroupProofThatA
Date of creation 2013-03-22 15:32:46
Last modified on 2013-03-22 15:32:46
Owner Dr_Absentius (537)
Last modified by Dr_Absentius (537)
Numerical id 5
Author Dr_Absentius (537)
Entry type Proof
Classification msc 20-00