table of continued fractions of for
The simple continued fractions for the square roots of positive integers (which aren’t perfect powers) are non-terminating but they are periodic. In the following table, the square roots of the integers from 2 to 101 (excluding perfect powers) are listed in compact form: first the integer part followed by semicolon, then the periodic part stated once, its individual terms separated by commas. For example, the notation “14; 14, 28” for 198 means
where the dots mean a periodic repetition of 14 and 28 in the denominators.
Continued fraction of | |
---|---|
2 | 1; 2 |
3 | 1; 1, 2 |
5 | 2; 4 |
6 | 2; 2, 4 |
7 | 2; 1, 1, 1, 4 |
8 | 2; 1, 4 |
10 | 3; 6 |
11 | 3; 3, 6 |
12 | 3; 2, 6 |
13 | 3; 1, 1, 1, 1, 6 |
14 | 3; 1, 2, 1, 6 |
15 | 3; 1, 6 |
17 | 4; 8 |
18 | 4; 4, 8 |
19 | 4; 2, 1, 3, 1, 2, 8 |
20 | 4; 2, 8 |
21 | 4; 1, 1, 2, 1, 1, 8 |
22 | 4; 1, 2, 4, 2, 1, 8 |
23 | 4; 1, 3, 1, 8 |
24 | 4; 1, 8 |
26 | 5; 10 |
27 | 5; 5, 10 |
28 | 5; 3, 2, 3, 10 |
29 | 5; 2, 1, 1, 2, 10 |
30 | 5; 2, 10 |
31 | 5; 1, 1, 3, 5, 3, 1, 1, 10 |
32 | 5; 1, 1, 1, 10 |
33 | 5; 1, 2, 1, 10 |
34 | 5; 1, 4, 1, 10 |
35 | 5; 1, 10 |
37 | 6; 12 |
38 | 6; 6, 12 |
39 | 6; 4, 12 |
40 | 6; 3, 12 |
41 | 6; 2, 2, 12 |
42 | 6; 2, 12 |
43 | 6; 1, 1, 3, 1, 5, 1, 3, 1, 1, 12 |
44 | 6; 1, 1, 1, 2, 1, 1, 1, 12 |
45 | 6; 1, 2, 2, 2, 1, 12 |
46 | 6; 1, 3, 1, 1, 2, 6, 2, 1, 1, 3, 1, 12 |
47 | 6; 1, 5, 1, 12 |
48 | 6; 1, 12 |
50 | 7; 14 |
51 | 7; 7, 14 |
52 | 7; 4, 1, 2, 1, 4, 14 |
53 | 7; 3, 1, 1, 3, 14 |
54 | 7; 2, 1, 6, 1, 2, 14 |
55 | 7; 2, 2, 2, 14 |
56 | 7; 2, 14 |
57 | 7; 1, 1, 4, 1, 1, 14 |
58 | 7; 1, 1, 1, 1, 1, 1, 14 |
59 | 7; 1, 2, 7, 2, 1, 14 |
60 | 7; 1, 2, 1, 14 |
61 | 7; 1, 4, 3, 1, 2, 2, 1, 3, 4, 1, 14 |
62 | 7; 1, 6, 1, 14 |
63 | 7; 1, 14 |
65 | 8; 16 |
66 | 8; 8, 16 |
67 | 8; 5, 2, 1, 1, 7, 1, 1, 2, 5, 16 |
68 | 8; 4, 16 |
69 | 8; 3, 3, 1, 4, 1, 3, 3, 16 |
70 | 8; 2, 1, 2, 1, 2, 16 |
71 | 8; 2, 2, 1, 7, 1, 2, 2, 16 |
72 | 8; 2, 16 |
73 | 8; 1, 1, 5, 5, 1, 1, 16 |
74 | 8; 1, 1, 1, 1, 16 |
75 | 8; 1, 1, 1, 16 |
76 | 8; 1, 2, 1, 1, 5, 4, 5, 1, 1, 2, 1, 16 |
77 | 8; 1, 3, 2, 3, 1, 16 |
78 | 8; 1, 4, 1, 16 |
79 | 8; 1, 7, 1, 16 |
80 | 8; 1, 16 |
82 | 9; 18 |
83 | 9; 9, 18 |
84 | 9; 6, 18 |
85 | 9; 4, 1, 1, 4, 18 |
86 | 9; 3, 1, 1, 1, 8, 1, 1, 1, 3, 18 |
87 | 9; 3, 18 |
88 | 9; 2, 1, 1, 1, 2, 18 |
89 | 9; 2, 3, 3, 2, 18 |
90 | 9; 2, 18 |
91 | 9; 1, 1, 5, 1, 5, 1, 1, 18 |
92 | 9; 1, 1, 2, 4, 2, 1, 1, 18 |
93 | 9; 1, 1, 1, 4, 6, 4, 1, 1, 1, 18 |
94 | 9; 1, 2, 3, 1, 1, 5, 1, 8, 1, 5, 1, 1, 3, 2, 1, 18 |
95 | 9; 1, 2, 1, 18 |
96 | 9; 1, 3, 1, 18 |
97 | 9; 1, 5, 1, 1, 1, 1, 1, 1, 5, 1, 18 |
98 | 9; 1, 8, 1, 18 |
99 | 9; 1, 18 |
101 | 10; 20 |
As the table shows, the periodic part ends with .
Title | table of continued fractions of for |
---|---|
Canonical name | TableOfContinuedFractionsOfsqrtnFor1N102 |
Date of creation | 2013-03-22 17:30:25 |
Last modified on | 2013-03-22 17:30:25 |
Owner | PrimeFan (13766) |
Last modified by | PrimeFan (13766) |
Numerical id | 4 |
Author | PrimeFan (13766) |
Entry type | Data Structure |
Classification | msc 11A25 |