table of partial fraction expansions


The purpose of this entry is to collect a table of Mittag-Leffler type partial fraction expansions for various functions.

1 Elementary Functions

πcot(πz) = 1z+n=1(1z-n+1z+n) (1)
πsec(πz) = 21-2z+k=1(-1)k+1(22k-1-2z-22k+1-2z) (2)

2 Hypergeometric Functions

F12(z,1;z+1;w) = k=0wkz+k (4)

3 Gamma Functions

ψ(z)=Γ(z)Γ(z)+γ = 1z+k=1(1k-1z+k) (6)
(-1)nψ(n)(z)n! = k=01(z+k)n (7)
Γ(x)Γ(12)Γ(x+12) = n=0(2n)!22n(n!)21x+n (8)

Here γ is Mascheroni’s constant.

4 Elliptic Functions

(z|12ω,12ω) = 1z2+|k|+|k|0(1(z-kω-kω)2-1(kω+kω)2) (10)
Title table of partial fraction expansions
Canonical name TableOfPartialFractionExpansions
Date of creation 2013-03-22 15:44:29
Last modified on 2013-03-22 15:44:29
Owner rspuzio (6075)
Last modified by rspuzio (6075)
Numerical id 20
Author rspuzio (6075)
Entry type Example
Classification msc 30D30
Related topic ElementaryFunction
Related topic GammaFunction
Related topic HypergeometricFunction
Related topic EllipticFunction