table of values of the Möbius function and the Mertens function


The following table lists the values of the Möbius function μ(n) and the Mertens functionMathworldPlanetmath M(n) for 0<n<101. The Möbius function is defined as μ(n)=(-1)ω(n) (where ω(n) is the number of distinct prime factors function) for squarefreeMathworldPlanetmath numbers, and μ(n)=0 for any integer with a repeated prime factorMathworldPlanetmath. The Mertens function is the matching summatory function for the Möbius function,

M(n)=i=1nμ(i).
n μ(n) M(n) n μ(n) M(n) n μ(n) M(n) n μ(n) M(n)
1 1 1 26 1 -1 51 1 -2 76 0 -3
2 -1 0 27 0 -1 52 0 -2 77 1 -2
3 -1 -1 28 0 -1 53 -1 -3 78 -1 -3
4 0 -1 29 -1 -2 54 0 -3 79 -1 -4
5 -1 -2 30 -1 -3 55 1 -2 80 0 -4
6 1 -1 31 -1 -4 56 0 -2 81 0 -4
7 -1 -2 32 0 -4 57 1 -1 82 1 -3
8 0 -2 33 1 -3 58 1 0 83 -1 -4
9 0 -2 34 1 -2 59 -1 -1 84 0 -4
10 1 -1 35 1 -1 60 0 -1 85 1 -3
11 -1 -2 36 0 -1 61 -1 -2 86 1 -2
12 0 -2 37 -1 -2 62 1 -1 87 1 -1
13 -1 -3 38 1 -1 63 0 -1 88 0 -1
14 1 -2 39 1 0 64 0 -1 89 -1 -2
15 1 -1 40 0 0 65 1 0 90 0 -2
16 0 -1 41 -1 -1 66 -1 -1 91 1 -1
17 -1 -2 42 -1 -2 67 -1 -2 92 0 -1
18 0 -2 43 -1 -3 68 0 -2 93 1 0
19 -1 -3 44 0 -3 69 1 -1 94 1 1
20 0 -3 45 0 -3 70 -1 -2 95 1 2
21 1 -2 46 1 -2 71 -1 -3 96 0 2
22 1 -1 47 -1 -3 72 0 -3 97 -1 1
23 -1 -2 48 0 -3 73 -1 -4 98 0 1
24 0 -2 49 0 -3 74 1 -3 99 0 1
25 0 -2 50 0 -3 75 0 -3 100 0 1
Title table of values of the Möbius function and the Mertens function
Canonical name TableOfValuesOfTheMobiusFunctionAndTheMertensFunction
Date of creation 2013-03-22 18:06:27
Last modified on 2013-03-22 18:06:27
Owner PrimeFan (13766)
Last modified by PrimeFan (13766)
Numerical id 5
Author PrimeFan (13766)
Entry type Data Structure
Classification msc 11A25