Taylor expansion of √1+x
The Taylor series for f(x)=√1+x using the
T(x)=∞∑k=0f(k)(a)k!(x-a)k |
is given in the table below for the first few .
k |
expansion | simplified | at a=0 |
---|---|---|---|
0 | f(a) | (1+a)1/2 | 1 |
1 | f′(a)(x-a) | 12(1+a)-1/2(x-a) | 12x |
2 | f(2)(a)2!(x-a)2 | -18(1+a)-3/2(x-a)2 | -18x2 |
3 | f(3)(a)3!(x-a)3 | 348(1+a)-5/2(x-a)3 | 116x3 |
4 | f(4)(a)4!(x-a)4 | -15384(1+a)-7/2(x-a)4 | -5128x4 |
5 | f(5)(a)5!(x-a)5 | 1053840(1+a)-9/2(x-a)5 | 7256x5 |
6 | f(6)(a)6!(x-a)6 | -94546080(1+a)-11/2(x-a)6 | -211024x6 |
The general coefficient of the expansion, for n≥2 is:
f(n)(a)n! | =(12n)(1+a)12-n | ||
=12(-12)(-32)⋯(12-(n-1))n(n-1)(n-2)⋯1 | |||
Title | Taylor expansion of |
---|---|
Canonical name | TaylorExpansionOfsqrt1x |
Date of creation | 2013-03-22 15:45:52 |
Last modified on | 2013-03-22 15:45:52 |
Owner | stevecheng (10074) |
Last modified by | stevecheng (10074) |
Numerical id | 11 |
Author | stevecheng (10074) |
Entry type | Example |
Classification | msc 26A09 |
Related topic | ExamplesOnHowToFindTaylorSeriesFromOtherKnownSeries |