value of the Riemann zeta function at s=0


Theorem.

Let ζ denote the meromorphic extension of the Riemann zeta functionDlmfDlmfMathworldPlanetmath to the complex plane. Then ζ(0)=-12.

Proof.

Recall that one of the for the Riemann zeta function in the critical stripMathworldPlanetmath is given by

ζ(s)=1s-1+1-s1x-[x]xs+1𝑑x,

where [x] denotes the integer part of x.

Also recall the functional equation

ζ(s)=2sπs-1sinπs2Γ(1-s)ζ(1-s),

where Γ denotes the gamma functionDlmfDlmfMathworldPlanetmath.

The only pole (http://planetmath.org/Pole) of ζ occurs at s=1. Therefore, ζ is analytic, and thus continuous, at s=0.

Let lims0+ denote the limit as s approaches 0 along any path contained in the region Re(s)>0. Thus:

ζ(0) =lims0+ζ(s)
=lims0+2sπs-1sinπs2Γ(1-s)ζ(1-s)
=lims0+2sπs-1(n=0(-1)n(2n+1)!(πs2)2n+1)Γ(1-s)(1(1-s)-1+1-(1-s)1x-[x]x(1-s)+1𝑑x)
=lims0+2sπs-1(πs2)(n=0(-1)n(2n+1)!(πs2)2n)Γ(1-s)(1-s+1-(1-s)1x-[x]x2-s𝑑x)
=lims0+2sπs-1(π2)(1+n=1(-1)n(2n+1)!(πs2)2n)Γ(1-s)s(-1s+1-(1-s)1x-[x]x2-s𝑑x)
=lims0+2s-1πs(1+n=1(-1)n(2n+1)!(πs2)2n)Γ(1-s)(-1+s-s(1-s)1x-[x]x2-s𝑑x)
=(lims0+2s-1πsΓ(1-s)(-1+s-s(1-s)1x-[x]x2-s𝑑x))(lims0+1+n=1(-1)n(2n+1)!(πs2)2n)
=(20-1π0Γ(1-0)(-1+0-0(1-0)1x-[x]x2-0𝑑x))(1+n=1(-1)n(2n+1)!(π02)2n)
=(121Γ(1)(-1+0-0))(1+n=10)
=-12.

Title value of the Riemann zeta function at s=0
Canonical name ValueOfTheRiemannZetaFunctionAtS0
Date of creation 2013-03-22 16:07:17
Last modified on 2013-03-22 16:07:17
Owner Wkbj79 (1863)
Last modified by Wkbj79 (1863)
Numerical id 20
Author Wkbj79 (1863)
Entry type Theorem
Classification msc 11M06
Related topic CriticalStrip
Related topic FormulaeForZetaInTheCriticalStrip