value of the Riemann zeta function at s=2


Here we present an application of Parseval’s equality to number theoryMathworldPlanetmathPlanetmath. Let ζ(s) denote the Riemann zeta functionDlmfDlmfMathworldPlanetmath. We will compute the value

ζ(2)

with the help of Fourier analysis.

Example:

Let f: be the “identity” functionMathworldPlanetmath, defined by

f(x)=x, for all x.

The Fourier seriesMathworldPlanetmath of this function has been computed in the entry example of Fourier series.

Thus

f(x)=x = a0f+n=1(anfcos(nx)+bnfsin(nx))
= n=1(-1)n+12nsin(nx),x(-π,π).

Parseval’s theorem asserts that:

1π-ππf2(x)𝑑x=2(a0f)2+k=1[(akf)2+(bkf)2].

So we apply this to the function f(x)=x:

2(a0f)2+k=1[(akf)2+(bkf)2]=n=14n2=4n=11n2

and

1π-ππf2(x)𝑑x=1π-ππx2𝑑x=2π23.

Hence by Parseval’s equality

4n=11n2=2π23

and hence

ζ(2)=n=11n2=π26.
Title value of the Riemann zeta function at s=2
Canonical name ValueOfTheRiemannZetaFunctionAtS2
Date of creation 2013-03-22 13:57:16
Last modified on 2013-03-22 13:57:16
Owner alozano (2414)
Last modified by alozano (2414)
Numerical id 15
Author alozano (2414)
Entry type Theorem
Classification msc 11M99
Classification msc 42A16
Related topic ExampleOfFourierSeries
Related topic PersevalEquality
Related topic ValuesOfTheRiemannZetaFunctionInTermsOfBernoulliNumbers
Related topic ValueOfRiemannZetaFunctionAtS4
Related topic ValueOfDirichletEtaFunctionAtS2
Related topic APathologicalFunctionOfRiemann
Related topic KummersAccelerationMethod