values of the Legendre symbol
For an integer and an odd prime , let be the Legendre symbol.
Theorem.
Let be an odd prime. The Legendre symbol takes the following values:
-
1.
-
2.
-
3.
-
4.
Proof.
For a proof of (1), see http://planetmath.org/node/1IsQuadraticResidueIfAndOnlyIfPequiv1Mod4this entry. Part (2) is proved in http://planetmath.org/node/QuadraticCharacterOf2this entry. For parts (3), (4) and (5), we use quadratic reciprocity. For example,
and the only quadratic residues modulo are . ∎
Title | values of the Legendre symbol |
---|---|
Canonical name | ValuesOfTheLegendreSymbol |
Date of creation | 2013-03-22 16:18:13 |
Last modified on | 2013-03-22 16:18:13 |
Owner | alozano (2414) |
Last modified by | alozano (2414) |
Numerical id | 5 |
Author | alozano (2414) |
Entry type | Theorem |
Classification | msc 11-00 |
Related topic | 1IsQuadraticResidueIfAndOnlyIfPequiv1Mod4 |
Related topic | QuadraticCharacterOf2 |