-net
Definition Suppose is a metric space with a metric , and suppose is a subset of . Let be a positive real number. A subset is an -net for if, for all , there is an , such that .
For any and , the set is trivially an -net for itself.
Theorem Suppose is a metric space with a metric , and suppose is a subset of . Let be a positive real number. Then is an -net for , if and only if
is a cover for . (Here is the open ball with center and radius .)
Proof. Suppose is an -net for . If , there is an such that . Thus, is covered by some set in . Conversely, suppose is a cover for , and suppose . By assumption, there is an , such that . Hence with .
Example In with the usual Cartesian metric, the set
is an -net for assuming that .
The above definition and example can be found in [1], page 64-65.
References
- 1 G. Bachman, L. Narici, Functional analysis, Academic Press, 1966.
Title | -net |
---|---|
Canonical name | varepsilonnet |
Date of creation | 2013-03-22 13:37:54 |
Last modified on | 2013-03-22 13:37:54 |
Owner | Koro (127) |
Last modified by | Koro (127) |
Numerical id | 4 |
Author | Koro (127) |
Entry type | Definition |
Classification | msc 54E35 |
Related topic | Cover |