# absolute convergence of infinite product

An infinite product ${\prod}_{n=1}^{\mathrm{\infty}}(1+{a}_{n})$ is said to be if ${\prod}_{n=1}^{\mathrm{\infty}}(1+|{a}_{n}|)$ converges.

Title | absolute convergence of infinite product |
---|---|

Canonical name | AbsoluteConvergenceOfInfiniteProduct |

Date of creation | 2013-03-22 13:36:00 |

Last modified on | 2013-03-22 13:36:00 |

Owner | mathcam (2727) |

Last modified by | mathcam (2727) |

Numerical id | 9 |

Author | mathcam (2727) |

Entry type | Definition |

Classification | msc 30E20 |

Related topic | AbsoluteConvergenceImpliesConvergenceForAnInfiniteProduct |