Hamel function
A function $h:{\mathbb{R}}^{n}\to \mathbb{R}$ is said to be a Hamel function if $h$, considered as a subset $\{(x,h(x)\}\subset {\mathbb{R}}^{n+1}$, is a Hamel basis^{} for ${\mathbb{R}}^{n+1}$ over $\mathbb{Q}$. We denote the set of $n$dimensional Hamel function by $HF({\mathbb{R}}^{n})$.

•
Poltka, K. On Functions Whose Graph is a Hamel Basis. Unpublised Ph.D. work. Online at http://academic.scranton.edu/faculty/PLOTKAK2/publications/ham_0911.pdf
Title  Hamel function 

Canonical name  HamelFunction 
Date of creation  20130322 14:15:19 
Last modified on  20130322 14:15:19 
Owner  mathcam (2727) 
Last modified by  mathcam (2727) 
Numerical id  7 
Author  mathcam (2727) 
Entry type  Definition 
Classification  msc 15A03 
Classification  msc 54C40 