# multigrade operator

A multigrade operator $\mathrm{\Omega}$ is a parametric operator with parameter $k$ in the set $\mathbb{N}$ of non-negative integers.

The application of a multigrade operator $\mathrm{\Omega}$ to a finite sequence^{} of operands $({x}_{1},\mathrm{\dots},{x}_{k})$ is typically denoted with the parameter $k$ left tacit, as the appropriate application is implicit in the number of operands listed. Thus $\mathrm{\Omega}({x}_{1},\mathrm{\dots},{x}_{k})$ may be taken for ${\mathrm{\Omega}}_{k}({x}_{1},\mathrm{\dots},{x}_{k}).$

Title | multigrade operator |
---|---|

Canonical name | MultigradeOperator |

Date of creation | 2013-03-22 17:48:11 |

Last modified on | 2013-03-22 17:48:11 |

Owner | Jon Awbrey (15246) |

Last modified by | Jon Awbrey (15246) |

Numerical id | 4 |

Author | Jon Awbrey (15246) |

Entry type | Definition |

Classification | msc 03E20 |

Classification | msc 03C05 |

Classification | msc 08A40 |

Classification | msc 08A70 |

Related topic | ParametricOperator |