# negative semidefinite

Let $A$ be an $n\times n$ symmetric^{} real square matrix^{}. If for any non-zero vector $x$ we have

$${x}^{t}Ax\le 0,$$ |

we call $A$ a *negative semidefinite* matrix.

Title | negative semidefinite |
---|---|

Canonical name | NegativeSemidefinite |

Date of creation | 2013-03-22 12:20:14 |

Last modified on | 2013-03-22 12:20:14 |

Owner | drini (3) |

Last modified by | drini (3) |

Numerical id | 4 |

Author | drini (3) |

Entry type | Definition |

Classification | msc 15A48 |