# nilpotent ideal

A left (right) ideal $I$ of a ring $R$ is a nilpotent ideal^{} if ${I}^{n}=0$ for some positive integer $n$. Here ${I}^{n}$ denotes a product of ideals – $I\cdot I\mathrm{\cdots}I$.

Title | nilpotent ideal |
---|---|

Canonical name | NilpotentIdeal |

Date of creation | 2013-03-22 12:01:27 |

Last modified on | 2013-03-22 12:01:27 |

Owner | antizeus (11) |

Last modified by | antizeus (11) |

Numerical id | 6 |

Author | antizeus (11) |

Entry type | Definition |

Classification | msc 16D25 |