# nilradical

Let $\U0001d524$ be a Lie algebra. Then the nilradical $\U0001d52b$ of $\U0001d524$ is defined to be the intersection of the kernels of all the irreducible representations of $\U0001d524$. Equivalently, $\U0001d52b=[\U0001d524,\U0001d524]\cap \mathrm{rad}\U0001d524$, the intersection of the derived ideal and radical of $\U0001d524$.

Title | nilradical |
---|---|

Canonical name | Nilradical1 |

Date of creation | 2013-03-22 13:51:22 |

Last modified on | 2013-03-22 13:51:22 |

Owner | bwebste (988) |

Last modified by | bwebste (988) |

Numerical id | 5 |

Author | bwebste (988) |

Entry type | Definition |

Classification | msc 17B05 |