# Pascal’s rule

Pascal’s rule is the binomial identity

$$\left(\genfrac{}{}{0pt}{}{n}{k}\right)+\left(\genfrac{}{}{0pt}{}{n}{k-1}\right)=\left(\genfrac{}{}{0pt}{}{n+1}{k}\right)$$ |

where $1\le k\le n$ and $\left(\genfrac{}{}{0pt}{}{n}{k}\right)$ is the binomial coefficient^{}.

Title | Pascal’s rule |

Canonical name | PascalsRule |

Date of creation | 2013-03-22 11:46:44 |

Last modified on | 2013-03-22 11:46:44 |

Owner | KimJ (5) |

Last modified by | KimJ (5) |

Numerical id | 10 |

Author | KimJ (5) |

Entry type | Theorem |

Classification | msc 05A19 |

Related topic | BinomialCoefficient |

Related topic | VandermondeIdentity |

Related topic | PascalsTriangle |

Related topic | TheoremOfThePrimalRay |

Related topic | Mm2 |

Related topic | Mm |

Related topic | LeTheoremeDuRayonPrimal |

Related topic | LeDeuxiemeTheoremeDuRayonPrimal |

Related topic | AProofOfGoldbachConjecture |

Related topic | AProofOfDePolignacConjectures |

Related topic | FermatGhanouchiSeriesAmazingFermatGhanouchiSequ |