property


Let X be a set. A property p of X is a function

p:Xβ†’{π‘‘π‘Ÿπ‘’π‘’,π‘“π‘Žπ‘™π‘ π‘’}.

An element x∈X is said to have or does not have the property p depending on whether p⁒(x)=π‘‘π‘Ÿπ‘’π‘’ or p⁒(x)=π‘“π‘Žπ‘™π‘ π‘’. Any property gives rise in a natural way to the set

X⁒(p):={x∈X|x⁒ has property ⁒p}

and the corresponding http://planetmath.org/node/CharacteristicFunctioncharacteristic functionMathworldPlanetmathPlanetmathPlanetmath 1X⁒(p). The identification of p with X⁒(p)βŠ†X enables us to think of a property of X as a 1-ary, or a unary relation on X. Therefore, one may treat all these notions equivalently.

Usually, a property p of X can be identified with a so-called propositional function, or a predicate φ⁒(v), where v is a variable or a tuple of variables whose values range over X. The values of a propositional function is a propositionPlanetmathPlanetmath, which can be interpreted as being either β€œtrue” or β€œfalse”, so that X⁒(p)={xβˆ£Ο†β’(x)⁒ isΒ β’π‘‘π‘Ÿπ‘’π‘’}.

Below are a few examples:

  • β€’

    Let X=β„€. Let φ⁒(v) be the propositional function β€œv is divisible by 3”. If p is the property identified with φ⁒(v), then X⁒(p)=3⁒℀.

  • β€’

    Again, let X=β„€. Let φ⁒(v1,v2):=β€œv1 is divisible by v2” and p the corresponding property. Then

    X⁒(p)={(m,n)∣m=n⁒p⁒, for some ⁒pβˆˆβ„€},

    which is a subset of XΓ—X. So p is a property of XΓ—X.

  • β€’

    The reflexive property of a binary relation on X can be identified with the propositional function φ⁒(V):=`⁒`β’βˆ€a∈X⁒, ⁒(a,a)∈V”, and therefore

    X⁒(p)={RβŠ†XΓ—Xβˆ£Ο†β’(R)⁒ isΒ β’π‘‘π‘Ÿπ‘’π‘’},

    which is a subset of 2XΓ—X. Thus, p is a property of 2XΓ—X.

  • β€’

    In point set topologyMathworldPlanetmath, we often encounter the finite intersection property on a family of subsets of a given set X. Let

    Ο†(𝒱):=``βˆ€nβˆˆβ„•,βˆ€E1βˆˆπ’±,…,βˆ€Enβˆˆπ’±,βˆƒx∈X(x∈E1βˆ©β‹―βˆ©En)”

    and p the corresponding property, then

    X⁒(p)={β„±βŠ†2Xβˆ£Ο†β’(β„±)⁒ isΒ β’π‘‘π‘Ÿπ‘’π‘’},

    which is a subset of 22X. Thus p is a property of 22X.

Title property
Canonical name Property
Date of creation 2013-03-22 14:01:29
Last modified on 2013-03-22 14:01:29
Owner drini (3)
Last modified by drini (3)
Numerical id 15
Author drini (3)
Entry type Definition
Classification msc 00A05
Synonym attribute
Synonym propositional function
Related topic Subset
Related topic CharacteristicFunction
Related topic Relation
Related topic ClosureOfARelationWithRespectToAProperty
Defines unary relation
Defines predicate