San Marco dragon
The San Marco dragon is a Julia set^{} (http://planetmath.org/SetDeJulia) produced by
$$c=-\frac{3}{4}+0i.$$ |
Like other on the horizontal center line of the Mandelbrot set^{}, the San Marco dragon is symmetrical around its horizontal axis, but this particular set reminded Benoît Mandelbrot of St. Mark’s cathedral in Venice (and its reflection^{} in the canal) more than the others.
References
- 1 H. Lauwerier, translated by Sophia Gill-Hoffstädt. Fractals^{}: Endlessly Repeated Geometric Figures Princeton: Princeton University Press (1991): 144
Title | San Marco dragon |
---|---|
Canonical name | SanMarcoDragon |
Date of creation | 2013-03-22 17:15:54 |
Last modified on | 2013-03-22 17:15:54 |
Owner | PrimeFan (13766) |
Last modified by | PrimeFan (13766) |
Numerical id | 5 |
Author | PrimeFan (13766) |
Entry type | Example |
Classification | msc 28A80 |