# sigma derivation

If $\sigma $ is a ring endomorphism^{} on a ring $R$,
then a (left) $\sigma $-derivation^{}
is an additive map $\delta $ on $R$ such that
$\delta (x\cdot y)=\sigma (x)\cdot \delta (y)+\delta (x)\cdot y$
for all $x,y$ in $R$.

Title | sigma derivation |
---|---|

Canonical name | SigmaDerivation |

Date of creation | 2013-03-22 11:42:50 |

Last modified on | 2013-03-22 11:42:50 |

Owner | antizeus (11) |

Last modified by | antizeus (11) |

Numerical id | 22 |

Author | antizeus (11) |

Entry type | Definition |

Classification | msc 16S36 |

Classification | msc 81S40 |

Classification | msc 81Txx |

Classification | msc 18E05 |

Classification | msc 55N40 |

Classification | msc 18-00 |