# simultaneous converging or diverging of product and sum theorem

Let ${a}_{k}\ge 0$. Then

$$\prod _{n=1}^{\mathrm{\infty}}(1+{a}_{n})\text{and}\sum _{n=1}^{\mathrm{\infty}}{a}_{n}$$ |

converge or diverge simultaneously.

Title | simultaneous converging or diverging of product and sum theorem |
---|---|

Canonical name | SimultaneousConvergingOrDivergingOfProductAndSumTheorem |

Date of creation | 2013-03-22 13:35:55 |

Last modified on | 2013-03-22 13:35:55 |

Owner | Johan (1032) |

Last modified by | Johan (1032) |

Numerical id | 6 |

Author | Johan (1032) |

Entry type | Theorem |

Classification | msc 30E20 |