Stern-Brocot tree
If we start with irreducible fractions representing zero and infinity,
01,10, |
and then between adjacent fractions mn and m′n′ we insert fraction m+m′n+n′, then we obtain
01,11,10. |
Repeating the process, we get
01,12,11,21,10, |
and then
01,13,12,23,11,32,21,31,10, |
and so forth. It can be proven that every irreducible fraction
appears at some iteration and no fraction ever appears twice [1]. The process
can be represented graphically by means of so-called
Stern-Brocot tree, named after its discoverers, Moritz Stern
and Achille Brocot.
{xy}*!C\xybox\xymatrix@C=0.4em01\ar@.[d]&&&&&&&&11\ar@-[lllld]\ar@.[d]\ar@-[rrrrd]&&&&&&&&10\ar@.[d]01\ar@.[d]&&&&12\ar@-[lld]\ar@.[d]\ar@-[rrd]&&&&11\ar@.[d]&&&&21\ar@-[lld]\ar@.[d]\ar@-[rrd]&&&&10\ar@.[d]01\ar@.[d]&&13\ar@-[ld]\ar@.[d]\ar@-[rd]&&12\ar@.[d]&&23\ar@-[ld]\ar@.[d]\ar@-[rd]&&11\ar@.[d]&&32\ar@-[ld]\ar@.[d]\ar@-[rd]&&21\ar@.[d]&&31\ar@-[ld]\ar@.[d]\ar@-[rd]&&10\ar@.[d]01\ar@.+<0em,-5ex>&14\ar@-+<-0.5em,-5ex>\ar@.+<0em,-5ex>\ar@-+<0.5em,-5ex>&13\ar@.+<0em,-5ex>&25\ar@-+<-0.5em,-5ex>\ar@.+<0em,-5ex>\ar@-+<0.5em,-5ex>&12\ar@.+<0em,-5ex>&35\ar@-+<-0.5em,-5ex>\ar@.+<0em,-5ex>\ar@-+<0.5em,-5ex>&23\ar@.+<0em,-5ex>&34\ar@-+<-0.5em,-5ex>\ar@.+<0em,-5ex>\ar@-+<0.5em,-5ex>&11\ar@.+<0em,-5ex>&43\ar@-+<-0.5em,-5ex>\ar@.+<0em,-5ex>\ar@-+<0.5em,-5ex>&32\ar@.+<0em,-5ex>&53\ar@-+<-0.5em,-5ex>\ar@.+<0em,-5ex>\ar@-+<0.5em,-5ex>&21\ar@.+<0em,-5ex>&52\ar@-+<-0.5em,-5ex>\ar@.+<0em,-5ex>\ar@-+<0.5em,-5ex>&31\ar@.+<0em,-5ex>&41\ar@-+<-0.5em,-5ex>\ar@.+<0em,-5ex>\ar@-+<0.5em,-5ex>&10\ar@.+<0em,-5ex> |
If we specify position of a fraction in the tree as a path consisting of L(eft) an R(ight) moves along the tree starting from the top (fraction 11), and also define matrices
L=[1101],R=[1011], |
then product of the matrices corresponding to the path is matrix [nn′mm′] whose entries are numerators and denominators of parent fractions. For example, the path leading to fraction 35 is LRL. The corresponding matrix product is
LRL=[1101][1011][1101]=[2312], |
and the parents of 35 are 12 and 23.
Continued fractions and Stern-Brocot tree are closely related. A continued fraction ⟨a0;a1,a2,…⟩ corresponds to fraction whose path from the top is Ra0La1Ra2⋯ with the last element removed. For example,
53 | =1+11+12=⟨1;1,2⟩=R1L1R2-1=RLR, | ||
411 | =0+12+11+13=⟨0;2,1,3⟩=R0L2R1L3-1=LLRLL. |
The irrational numbers correspond to the infinite paths in the Stern-Brocot tree. For example, the golden mean ϕ=⟨1;1,1,1,…⟩ corresponds to the infinite path RLRLR⋯. In particular, the denominator of the fraction corresponding to the string RLR⋯ of length n is the n’th Fibonacci number.
References
- 1 Ronald L. Graham, Donald E. Knuth, and Oren Patashnik. Concrete Mathematics. Addison-Wesley, 1998. http://www.emis.de/cgi-bin/zmen/ZMATH/en/quick.html?type=html&an=0836.00001Zbl 0836.00001.
Title | Stern-Brocot tree |
---|---|
\metatable |