# trigonometric equations

A trigonometric equation values of given trigonometric functions   whose arguments are unknown angles. The task is to determine all possible values of those angles. For obtaining the solution one needs the following properties of the trigonometric functions:

The first principle in solving a trigonometric equation is that try to elaborate with goniometric formulae or else it so that only one trigonometric function on one angle remains in the equation. Then the equation is usually resolved to the form

 $\displaystyle f(kx)=a,$ (1)

where $k$ and $a$ are known numbers and $f$ is one of the functions  sin, cos, tan, cot. Thereafter one can solve the values of the angle $kx$ and, dividing these by $k$, at last the values of the angle $x$.

Example 1.

 $\sin{x}\cos{x}+\frac{1}{4}=0$
 $2\sin{x}\cos{x}=-\frac{1}{2}$
 $\sin{2x}=-\frac{1}{2}$
 $\sin{2x}=\sin{210^{\circ}}$
 $2x=210^{\circ}+n\cdot 360^{\circ}\quad\lor\quad 2x=180^{\circ}-210^{\circ}+n% \cdot 360^{\circ}$
 $x=105^{\circ}+n\cdot 180^{\circ}\quad\lor\quad x=-15^{\circ}+n\cdot 180^{\circ}$

On the third line one used the double angle formula of sine.

It may happen that the form (1) cannot be attained, but instead e.g. the form

 $\displaystyle f(kx)=f(\alpha),$ (2)

where $x$ can be in $\alpha$.

Example 2.

 $\sin 2x=\cos 3x$
 $\cos(90^{\circ}-2x)=\cos 3x$
 $90^{\circ}-2x=3x+n\cdot 360^{\circ}\quad\lor\quad 90^{\circ}-2x=-3x+n\cdot 360% ^{\circ}$
 $-2x-3x=-90^{\circ}+n\cdot 360^{\circ}\quad\lor\quad-2x+3x=-90^{\circ}+n\cdot 3% 60^{\circ}$
 $x=18^{\circ}+n\cdot 72^{\circ}\quad\lor\quad x=-90^{\circ}+n\cdot 360^{\circ}$

On the second line one of the complement formulas was utilized.

Example 3.

 $\sin{2x}=-\sin{3x}$
 $\sin{2x}=\sin(-3x)$
 $2x=-3x+n\cdot 360^{\circ}\quad\lor\quad 2x=180^{\circ}-(-3x)+n\cdot 360^{\circ}$
 $x=n\cdot 72^{\circ}\quad\lor\quad x=180^{\circ}+n\cdot 360^{\circ}$

On the second line the opposite angle formula (http://planetmath.org/GoniometricFormulae) of sine was utilized.

Example 4.

 $\cos{2x}=-\cos{3x}$
 $\cos{2x}=\cos(180^{\circ}-3x)$
 $2x=\pm(180^{\circ}-3x)+n\cdot 360^{\circ}$
 $x=36^{\circ}+n\cdot 72^{\circ}\quad\lor\quad x=180^{\circ}+n\cdot 360^{\circ}$

On the second line the supplement formula (http://planetmath.org/GoniometricFormulae) of sine was utilized.

Title trigonometric equations TrigonometricEquations 2013-03-22 17:46:25 2013-03-22 17:46:25 pahio (2872) pahio (2872) 12 pahio (2872) Definition msc 33B10 msc 26A09 msc 00A35 Equation trigonometric equation