# Vitali covering

A collection^{} of sets $\mathcal{V}$ in a metric space $X$ is called a *Vitali covering* (or Vitali class) for $X$ if for each $x\in X$ and $\delta >0$ there exists $U\in \mathcal{V}$ such that $x\in U$ and $$.

Title | Vitali covering |
---|---|

Canonical name | VitaliCovering |

Date of creation | 2013-03-22 13:29:48 |

Last modified on | 2013-03-22 13:29:48 |

Owner | Koro (127) |

Last modified by | Koro (127) |

Numerical id | 6 |

Author | Koro (127) |

Entry type | Definition |

Classification | msc 54E99 |

Defines | Vitali class |