# convergence/divergence for an infinite product

Consider ${\prod}_{n=1}^{\mathrm{\infty}}{p}_{n}$. We say that this infinite product converges iff the finite products ${P}_{m}={\prod}_{n=1}^{m}{p}_{n}\u27f6P$ converge. Otherwise the infinite product is called divergent.

Title | convergence/divergence for an infinite product |
---|---|

Canonical name | ConvergencedivergenceForAnInfiniteProduct |

Date of creation | 2013-03-22 13:36:11 |

Last modified on | 2013-03-22 13:36:11 |

Owner | aoh45 (5079) |

Last modified by | aoh45 (5079) |

Numerical id | 13 |

Author | aoh45 (5079) |

Entry type | Definition |

Classification | msc 30E20 |

Related topic | AbsoluteConvergenceImpliesConvergenceForAnInfiniteProduct |