# Euler-Maclaurin summation formula

Let ${B}_{r}$ be the $r\text{th}$ Bernoulli number^{}, and ${B}_{r}(x)$ be the $r\text{th}$ Bernoulli periodic function. For any integer $k\ge 0$ and for any function $f$ of class ${C}^{k+1}$ on $[a,b],a,b\in \mathbb{Z}$, we have

$$ |

Title | Euler-Maclaurin summation formula |
---|---|

Canonical name | EulerMaclaurinSummationFormula |

Date of creation | 2013-03-22 11:46:01 |

Last modified on | 2013-03-22 11:46:01 |

Owner | KimJ (5) |

Last modified by | KimJ (5) |

Numerical id | 9 |

Author | KimJ (5) |

Entry type | Theorem |

Classification | msc 65B15 |

Classification | msc 00-02 |

Related topic | BernoulliNumber |