# expressible

Let $F$ be a field and $\alpha $ be algebraic (http://planetmath.org/AlgebraicElement) over $F$. Then $\alpha $ is *expressible* over $F$ if $F(\alpha )/F$ is a radical extension. On the other hand, $\alpha $ is *inexpressible* over $F$ if $F(\alpha )/F$ is not a radical extension.

Title | expressible |
---|---|

Canonical name | Expressible |

Date of creation | 2013-03-22 16:55:41 |

Last modified on | 2013-03-22 16:55:41 |

Owner | Wkbj79 (1863) |

Last modified by | Wkbj79 (1863) |

Numerical id | 7 |

Author | Wkbj79 (1863) |

Entry type | Definition |

Classification | msc 12F05 |

Classification | msc 12F10 |

Defines | inexpressible |