Fredholm module
Fredholm modules represent abstract elliptic pseudo-differential operators.
Definition 1.
An odd Fredholm module (ℋ,F) over a C*-algebra A
is given by an involutive representation π of A on a Hilbert space ℋ,
together with an operator F on ℋ such that
F=F*, F2=1I and [F,π(a)]∈𝕂(ℋ) for all a∈A.
Definition 2.
An even Fredholm module (ℋ,F,Γ) is given by an odd Fredholm module (ℋ,F) together with a ℤ2-grading Γ on ℋ, Γ=Γ*, Γ2=1I, such that Γπ(a)=π(a)Γ and ΓF=-FΓ.
Definition 3.
A Fredholm module is called degenerate if [F,π(a)]=0 for all a∈A. Degenerate Fredholm modules are homotopic to the 0-module.
Example 1 (Fredholm modules over C)
An even Fredholm module (H,F,Γ) over C is given by
ℋ | = | ℂk⊕ℂk | ||
Title | Fredholm module |
---|---|
Canonical name | FredholmModule |
Date of creation | 2013-03-22 12:57:43 |
Last modified on | 2013-03-22 12:57:43 |
Owner | mhale (572) |
Last modified by | mhale (572) |
Numerical id | 6 |
Author | mhale (572) |
Entry type | Definition |
Classification | msc 19K33 |
Classification | msc 46L87 |
Classification | msc 47A53 |
Related topic | KHomology |