# Hadwiger-Finsler inequality

In a triangle with sides $a$, $b$, $c$ and an area $A$ the following inequality^{} holds:

$${a}^{2}+{b}^{2}+{c}^{2}\ge {(a-b)}^{2}+{(b-c)}^{2}+{(c-a)}^{2}+4A\sqrt{3}.$$ |

Title | Hadwiger-Finsler inequality |
---|---|

Canonical name | HadwigerFinslerInequality |

Date of creation | 2013-03-22 12:45:18 |

Last modified on | 2013-03-22 12:45:18 |

Owner | mathwizard (128) |

Last modified by | mathwizard (128) |

Numerical id | 5 |

Author | mathwizard (128) |

Entry type | Theorem |

Classification | msc 51M16 |

Related topic | WeizenbocksInequality |