# Hlawka’s inequality

###### Theorem 1

In an inner product space^{} (http://planetmath.org/InnerProductSpace), let $x\mathrm{,}y\mathrm{,}z$ be vectors. Then

$$\parallel x+y\parallel +\parallel y+z\parallel +\parallel z+x\parallel \le \parallel x\parallel +\parallel y\parallel +\parallel z\parallel +\parallel x+y+z\parallel .$$ |

Title | Hlawka’s inequality^{} |
---|---|

Canonical name | HlawkasInequality |

Date of creation | 2013-03-22 16:08:56 |

Last modified on | 2013-03-22 16:08:56 |

Owner | Mathprof (13753) |

Last modified by | Mathprof (13753) |

Numerical id | 8 |

Author | Mathprof (13753) |

Entry type | Theorem |

Classification | msc 46C05 |