# modular space

Let $\rho $ be a modular on a real or complex vector space $X$. Then the subspace^{}

$${X}_{\rho}:=\{x\in X:\underset{\lambda \to 0}{lim}\rho (\lambda x)=0\}$$ |

of $X$ is called the *modular space* corresponding to the modular $\rho $.

Title | modular space |
---|---|

Canonical name | ModularSpace |

Date of creation | 2013-03-22 16:15:53 |

Last modified on | 2013-03-22 16:15:53 |

Owner | gilbert_51126 (14238) |

Last modified by | gilbert_51126 (14238) |

Numerical id | 6 |

Author | gilbert_51126 (14238) |

Entry type | Definition |

Classification | msc 46-00 |