# Multidimensional Chebyshev’s inequality

If $V$ is invertible  (i.e., strictly positive), for any $t>0$:

 $\Pr\left(\sqrt{\left(X-\mu\right)^{T}\,V^{-1}\,\left(X-\mu\right)}>t\right)% \leq\frac{N}{t^{2}}$

Proof: $V$ is positive, so $V^{-1}$ is. Define the random variable

 $y=\left(X-\mu\right)^{T}\,V^{-1}\,\left(X-\mu\right)$

$y$ is positive, then Markov’s inequality holds:

 $\Pr\left(\sqrt{\left(X-\mu\right)^{T}\,V^{-1}\,\left(X-\mu\right)}>t\right)=% \Pr\left(\sqrt{y}>t\right)=\Pr\left(y>t^{2}\right)\leq\frac{\mathbb{E}[y]}{t^{% 2}}$

Since $V$ is symmetric  , a rotation  $R$ (i.e., $R\,R^{T}=R^{T}\,R=I$) and a diagonal matrix  $D$ (i.e., $i\neq j\,\Rightarrow\,D_{i,j}=0$) exist such that

 $V=R^{T}\,D\,R$

Since $V$ is positive $D_{ii}>0$. Besides

 $V^{-1}=R^{-1}\,D^{-1}\,(R^{T})^{-1}=R^{T}\,D^{-1}\,R$

clearly $\left[D^{-1}\right]_{ii}=\frac{1}{D_{ii}}$.

Define $Z=R\,\left(X-\mu\right)$.

The following identities hold:

 $\mathbb{E}\left[Z\,Z^{T}\right]=R\,\mathbb{E}\left[\left(X-\mu\right)\,\left(X% -\mu\right)^{T}\right]\,R^{T}=R\,R^{T}\,D\,R\,R^{T}=D\quad\Rightarrow\quad% \forall i\quad\mathbb{E}\left[Z_{i}^{2}\right]=D_{ii}$

and

 $y=Z^{T}\,R\,V^{-1}\,R^{T}\,Z=Z^{T}\,D^{-1}\,Z=\sum\limits_{i=1}^{N}\frac{Z_{i}% ^{2}}{D_{ii}}$

then

 $\mathbb{E}[y]=\sum\limits_{i=1}^{N}\frac{\mathbb{E}\left[Z_{i}^{2}\right]}{D_{% ii}}=N$
Title Multidimensional Chebyshev’s inequality MultidimensionalChebyshevsInequality 2013-03-22 18:17:55 2013-03-22 18:17:55 daniWk (21206) daniWk (21206) 5 daniWk (21206) Theorem msc 60A99