# positive semidefinite

Let $A$ be an $n\times n$ symmetric^{} real square matrix^{}. If for any non-zero vector $x$ we have

$${x}^{t}Ax\ge 0,$$ |

we call $A$ a *positive semidefinite ^{}* matrix.

Title | positive semidefinite |
---|---|

Canonical name | PositiveSemidefinite |

Date of creation | 2013-03-22 12:20:10 |

Last modified on | 2013-03-22 12:20:10 |

Owner | drini (3) |

Last modified by | drini (3) |

Numerical id | 5 |

Author | drini (3) |

Entry type | Definition |

Classification | msc 15A48 |

Related topic | PositiveDefinite |

Related topic | NegativeDefinite |