proof of Jacobi’s identity for ϑ functions


We start with the Fourier transformDlmfMathworldPlanetmath of f(x)=eiπτx2+2ixz:

-+eiπτx2+2ixze2πixy𝑑x=(-iτ)-1/2e-i(z+πy)2πτ

Applying the Poisson summation formula, we obtain the following:

n=-+eiπτn2+2inz=(-iτ)-1/2n=-+e-i(z+πn)2πτ

The left hand equals ϑ3(zτ). The right hand can be rewritten as follows:

n=-+e-i(z+πn)2πτ=e-iz2πτn=-+e-iπn2τ-2inzτ=e-iz2πτϑ3(z/τ-1/τ)

Combining the two expressions yields

ϑ3(zτ)=e-iz2πτϑ3(z/τ-1/τ)
Title proof of Jacobi’s identity for ϑ functionsMathworldPlanetmath
Canonical name ProofOfJacobisIdentityForvarthetaFunctions
Date of creation 2013-03-22 14:47:01
Last modified on 2013-03-22 14:47:01
Owner rspuzio (6075)
Last modified by rspuzio (6075)
Numerical id 19
Author rspuzio (6075)
Entry type Proof
Classification msc 33E05