Szemerédi’s theorem
Let be a positive integer and let . There exists a positive integer such that every subset of of size (http://planetmath.org/Cardinality) contains an arithmetic progression of length .
The case was first proved by Roth[4]. His method did not seem to extend to the case . Using completely different ideas Szemerédi proved the case [5], and the general case of an arbitrary [6].
The best known bounds for are
where the lower bound is due to Behrend[1] (for ) and Rankin[3], and the upper bound is due to Gowers[2].
For a better upper bound was obtained by Bourgain
References
- 1 Felix A. Behrend. On the sets of integers which contain no three in arithmetic progression. Proc. Nat. Acad. Sci., 23:331–332, 1946. http://www.emis.de/cgi-bin/zmen/ZMATH/en/quick.html?type=html&an=0060.10302Zbl 0060.10302.
- 2 Timothy Gowers. A new proof of Szemerédi’s theorem. Geom. Funct. Anal., 11(3):465–588, 2001. Preprint available at http://www.dpmms.cam.ac.uk/ wtg10/papers.htmlhttp://www.dpmms.cam.ac.uk/ wtg10/papers.html.
- 3 Robert A. Rankin. Sets of integers containing not more than a given number of terms in arithmetical progression. Proc. Roy. Soc. Edinburgh Sect. A, 65:332–344, 1962. http://www.emis.de/cgi-bin/zmen/ZMATH/en/quick.html?type=html&an=0104.03705Zbl 0104.03705.
- 4 Klaus Friedrich Roth. On certain sets of integers. J. London Math. Soc., 28:245–252, 1953. http://www.emis.de/cgi-bin/zmen/ZMATH/en/quick.html?type=html&an=0050.04002Zbl 0050.04002.
- 5 Endre Szemerédi. On sets of integers containing no four elements in arithmetic progression. Acta Math. Acad. Sci. Hung., 20:89–104, 1969. http://www.emis.de/cgi-bin/zmen/ZMATH/en/quick.html?type=html&an=0175.04301Zbl 0175.04301.
- 6 Endre Szemerédi. On sets of integers containing no elements in arithmetic progression. Acta. Arith., 27:299–345, 1975. http://www.emis.de/cgi-bin/zmen/ZMATH/en/quick.html?type=html&an=0303.10056Zbl 0303.10056.
Title | Szemerédi’s theorem |
---|---|
Canonical name | SzemeredisTheorem |
Date of creation | 2013-03-22 13:19:40 |
Last modified on | 2013-03-22 13:19:40 |
Owner | bbukh (348) |
Last modified by | bbukh (348) |
Numerical id | 17 |
Author | bbukh (348) |
Entry type | Theorem |
Classification | msc 11B25 |
Classification | msc 05D10 |