uniform module

A module M is said to be uniform if any two nonzero submodulesMathworldPlanetmath of M must have a nonzero intersectionMathworldPlanetmathPlanetmath. This is equivalentMathworldPlanetmathPlanetmathPlanetmathPlanetmathPlanetmath to saying that any nonzero submodule is an essential submodule.

Title uniform module
Canonical name UniformModule
Date of creation 2013-03-22 11:51:20
Last modified on 2013-03-22 11:51:20
Owner antizeus (11)
Last modified by antizeus (11)
Numerical id 8
Author antizeus (11)
Entry type Definition
Classification msc 16D80
Defines uniform submodule