Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js

arithmetic derivative


The arithmetic derivative n of a natural numberMathworldPlanetmath n is defined by the following rules:

  • p=1 for any prime p.

  • (ab)=ab+ab for any a,b (Leibniz rulePlanetmathPlanetmath).

To define the arithmetic derivative of a negative number, we first note that 1=0 by the Leibniz rule (1=(11)=11+11=21, so 1=0), and further that we must have

0=1=((-1)(-1))=-2(-1),

so (-1)=0. The product ruleMathworldPlanetmath now requires that we define (-n)=-(n)+n(-1)=-(n).

Further, we can extend this definition to rational numbers by insisting that the quotient ruleMathworldPlanetmath holds, i.e. for a prime p we should have

0=1=(p1p)=(1p)p+1p,

giving us that

(1p)=-1p2,

i.e. the usual quotient rule from calculus. We now completePlanetmathPlanetmathPlanetmathPlanetmathPlanetmathPlanetmathPlanetmath the definition by extending multiplicatively (i.e. using the Leibniz rule).

The arithmetic derivatives for the first few positive integers are 0, 1, 1, 4, 1, 5, 1, 12, 6, 7, 1, 16, 1, 9, 8, 32, 1, 21, 1, 24, 10, 13, 1, 44, 10, etc.

As a consequence of p=1 for a prime p, the arithmetic derivative of a semiprime (whether squarefreeMathworldPlanetmath or not) works out to (pq)=pq+pq=1p+q1=p+q. For example, the arithmetic derivative of 10 is 7, which is 2 plus 5.

The only cases of n=n for -1<n<1024 are 0, 4, 27.

n n n n n n n n n n n n n n n n n n n n
0 0 10 7 20 24 30 31 40 68 50 45 60 92 70 59 80 176 90 123
1 0 11 1 21 10 31 1 41 1 51 20 61 1 71 1 81 108 91 20
2 1 12 16 22 13 32 80 42 41 52 56 62 33 72 156 82 43 92 96
3 1 13 1 23 1 33 14 43 1 53 1 63 51 73 1 83 1 93 34
4 4 14 9 24 44 34 19 44 48 54 81 64 192 74 39 84 124 94 49
5 1 15 8 25 10 35 12 45 39 55 16 65 18 75 55 85 22 95 24
6 5 16 32 26 15 36 60 46 25 56 92 66 61 76 80 86 45 96 272
7 1 17 1 27 27 37 1 47 1 57 22 67 1 77 18 87 32 97 1
8 12 18 21 28 32 38 21 48 112 58 31 68 72 78 71 88 140 98 77
9 6 19 1 29 1 39 16 49 14 59 1 69 26 79 1 89 1 99 75

References

  • 1 EJ Barbeau, “Remark on an arithmetic derivative”. Can. Math. Bull. 4 (1961): 117 - 122
Title arithmetic derivative
Canonical name ArithmeticDerivative
Date of creation 2013-03-22 13:35:09
Last modified on 2013-03-22 13:35:09
Owner PrimeFan (13766)
Last modified by PrimeFan (13766)
Numerical id 14
Author PrimeFan (13766)
Entry type Definition
Classification msc 11Z05
Related topic Prime