complete graph
The complete graph with vertices, denoted , contains all possible edges; that is, any two vertices are adjacent.
The complete graph of vertices, or looks like this:
The number of edges in is the th triangular number. Every vertex in has degree ; therefore has an Euler circuit if and only if is odd. A complete graph always has a Hamiltonian path, and the chromatic number of is always .
Title | complete graph |
---|---|
Canonical name | CompleteGraph |
Date of creation | 2013-03-22 12:16:57 |
Last modified on | 2013-03-22 12:16:57 |
Owner | vampyr (22) |
Last modified by | vampyr (22) |
Numerical id | 10 |
Author | vampyr (22) |
Entry type | Definition |
Classification | msc 05C99 |
Synonym | complete |
Synonym | clique |
Related topic | Tournament |