Beatty sequence


The integer sequence

(α,α):=(n-αα)n=1

is called the Beatty sequenceMathworldPlanetmath with density α, slope 1α, offset α, and y-intercept -αα.

Sometimes a sequence of the above type is called a floor Beatty sequence, and denoted (f)(α,α), while an integer sequence

(c)(α,α):=(n-αα)n=1

is called a ceiling Beatty sequence.

References

[1

] M. Lothaire, , vol. 90, Cambridge University Press, Cambridge, 2002, ISBN 0-521-81220-8, available online at http://www-igm.univ-mlv.fr/~berstel/Lothaire. A collective work by Jean Berstel, Dominique Perrin, Patrice Seebold, Julien Cassaigne, Aldo De Luca, Steffano Varricchio, Alain Lascoux, Bernard Leclerc, Jean-Yves Thibon, Veronique Bruyere, Christiane Frougny, Filippo Mignosi, Antonio Restivo, Christophe Reutenauer, Dominique Foata, Guo-Niu Han, Jacques Desarmenien, Volker Diekert, Tero Harju, Juhani Karhumaki and Wojciech Plandowski; With a preface by Berstel and Perrin. http://www.ams.org/mathscinet-getitem?mr=1905123MR 1905123

Title Beatty sequence
Canonical name BeattySequence
Date of creation 2013-03-22 13:37:23
Last modified on 2013-03-22 13:37:23
Owner Kevin OBryant (1315)
Last modified by Kevin OBryant (1315)
Numerical id 12
Author Kevin OBryant (1315)
Entry type Definition
Classification msc 11B83
Related topic BeattysTheorem
Related topic FraenkelsPartitionTheorem
Related topic DataStream
Related topic WideraInterlaceAndDeinterlace