Beatty sequence
Sometimes a sequence of the above type is called a floor Beatty sequence, and denoted , while an integer sequence
is called a ceiling Beatty sequence.
References
- [1
-
] M. Lothaire, , vol. 90, Cambridge University Press, Cambridge, 2002, ISBN 0-521-81220-8, available online at http://www-igm.univ-mlv.fr/~berstel/Lothaire. A collective work by Jean Berstel, Dominique Perrin, Patrice Seebold, Julien Cassaigne, Aldo De Luca, Steffano Varricchio, Alain Lascoux, Bernard Leclerc, Jean-Yves Thibon, Veronique Bruyere, Christiane Frougny, Filippo Mignosi, Antonio Restivo, Christophe Reutenauer, Dominique Foata, Guo-Niu Han, Jacques Desarmenien, Volker Diekert, Tero Harju, Juhani Karhumaki and Wojciech Plandowski; With a preface by Berstel and Perrin. http://www.ams.org/mathscinet-getitem?mr=1905123MR 1905123
Title | Beatty sequence |
---|---|
Canonical name | BeattySequence |
Date of creation | 2013-03-22 13:37:23 |
Last modified on | 2013-03-22 13:37:23 |
Owner | Kevin OBryant (1315) |
Last modified by | Kevin OBryant (1315) |
Numerical id | 12 |
Author | Kevin OBryant (1315) |
Entry type | Definition |
Classification | msc 11B83 |
Related topic | BeattysTheorem |
Related topic | FraenkelsPartitionTheorem |
Related topic | DataStream |
Related topic | WideraInterlaceAndDeinterlace |