example of induced representation


To understand the definition of induced representationMathworldPlanetmath, let us work through a simple example in detail.

Let G be the group of permutationsMathworldPlanetmath of three objects and let H be the subgroupMathworldPlanetmathPlanetmath of even permutationsMathworldPlanetmath. We have

G={e,(ab),(ac),(bc),(abc),(acb)}
H={e,(abc),(acb)}

Let V be the one dimensional representation of H. Being one-dimensional, V is spanned by a single basis vector v. The action of H on V is given as

ev=v
(abc)v=exp(2πi/3)v
(acb)v=exp(4πi/3)v

Since H has half as many elements as G, there are exactly two cosets, σ1 and σ2 in G/H where

σ1={e,(abc),(acb)}
σ2={(ab),(ac),(bc)}

Since there are two cosets, the vector spaceMathworldPlanetmath of the induced representation consists of the direct sumMathworldPlanetmathPlanetmathPlanetmath of two formal translatesMathworldPlanetmath of V. A basis for this space is {σ1v,σ2v}.

We will now compute the action of G on this vector space. To do this, we need a choice of coset representatives. Let us choose g1=e as a representative of σ1 and g2=(ab) as a representative of σ2. As a preliminary step, we shall express the productPlanetmathPlanetmath of every element of G with a coset representative as the product of a coset representative and an element of H.

eg1=e=g1e
eg2=(ab)=g2e
(ab)g1=(ab)=g2e
(ab)g2=e=g1e
(bc)g1=(bc)=g2(acb)
(bc)g2=(abc)=g1(abc)
(ac)g1=(ac)=g2(abc)
(ac)g2=(acb)=g1(acb)
(abc)g1=(abc)=g1(abc)
(abc)g2=(bc)=g2(acb)
(acb)g1=(acb)=g1(acb)
(acb)g2=(ac)=g2(abc)

We will now compute of the action of G using the formulaMathworldPlanetmathPlanetmath g(σv)=τ(hv) given in the definition.

e(σ1v)=[eg1](ev)=σ1v
e(σ2v)=[eg2](ev)=σ2v
(ab)(σ1v)=[(ab)g1](ev)=σ2v
(ab)(σ2v)=[(ab)g2](ev)=σ1v
(bc)(σ1v)=[(bc)g1]((acb)v)=exp(4πi/3)σ2v
(bc)(σ2v)=[(bc)g2]((abc)v)=exp(2πi/3)σ1v
(ac)(σ1v)=[(ac)g1]((abc)v)=exp(2πi/3)σ2v
(ac)(σ2v)=[(ac)g2]((acb)v)=exp(4πi/3)σ1v
(abc)(σ1v)=[(abc)g1]((abc)v)=exp(2πi/3)(σ1v)
(abc)(σ2v)=[(abc)g2]((acb)v)=exp(4πi/3)(σ2v)
(acb)(σ1v)=[(acb)g1]((acb)v)=exp(4πi/3)(σ1v)
(acb)(σ2v)=[(acb)g2]((abc)v)=exp(2πi/3)(σ2v)

Here the square brackets indicate the coset to which the group element inside the brackets belongs. For instance, [(ac)g2]=[(ac)(ab)]=[(acb)]=σ1 since (acb)σ1.

The results of the calculation may be easier understood when expressed in matrix form

e    (1001)
(ab)    (0110)
(bc)    (0exp(2πi/3)exp(4πi/3)0)
(ac)    (0exp(4πi/3)exp(2πi/3)0)
(abc)    (exp(2πi/3)00exp(4πi/3))
(acb)    (exp(4πi/3)00exp(2πi/3))

Having expressed the answer thus, it is not hard to verify that this is indeed a representation of G. For instance, (acb)(ac)=(bc) and

(exp(4πi/3)00exp(2πi/3))(0exp(4πi/3)exp(2πi/3)0)=(0exp(2πi/3)exp(4πi/3)0)
Title example of induced representation
Canonical name ExampleOfInducedRepresentation
Date of creation 2013-03-22 14:35:43
Last modified on 2013-03-22 14:35:43
Owner rspuzio (6075)
Last modified by rspuzio (6075)
Numerical id 8
Author rspuzio (6075)
Entry type Example
Classification msc 20C99