finitely generated torsion-free modules over Prüfer domains


Theorem.

Let M be a finitely generatedMathworldPlanetmathPlanetmath torsion-free module over a Prüfer domain R. Then, M is isomorphicPlanetmathPlanetmathPlanetmath to a direct sumMathworldPlanetmathPlanetmathPlanetmath (http://planetmath.org/DirectSum)

M𝔞1𝔞n

of finitely generated ideals a1,,an.

As invertible ideals are projective and direct sums of projective modulesMathworldPlanetmath are themselves projective, this theorem shows that M is also a projective module. Conversely, if every finitely generated torsion-free module over an integral domainMathworldPlanetmath R is projective then, in particular, every finitely generated nonzero ideal of R will be projective and hence invertiblePlanetmathPlanetmath. So, we get the following characterization of Prüfer domains.

Corollary.

An integral domain R is Prüfer if and only if every finitely generated torsion-free R-module is projective (http://planetmath.org/ProjectiveModule).

Title finitely generated torsion-free modules over Prüfer domains
Canonical name FinitelyGeneratedTorsionfreeModulesOverPruferDomains
Date of creation 2013-03-22 18:36:11
Last modified on 2013-03-22 18:36:11
Owner gel (22282)
Last modified by gel (22282)
Numerical id 4
Author gel (22282)
Entry type Theorem
Classification msc 13F05
Classification msc 13C10
Related topic EquivalentCharacterizationsOfDedekindDomains