formula for the convolution inverse of a completely multiplicative function


Corollary 1.

If f is a completely multiplicative functionMathworldPlanetmath, then its convolution inverse is fμ, where μ denotes the Möbius functionMathworldPlanetmath.

Proof.

Recall the Möbius inversion formulaMathworldPlanetmathPlanetmath 1*μ=ε, where ε denotes the convolution identity function. Thus, f(1*μ)=fε. Since pointwise multiplicationPlanetmathPlanetmath of a completely multiplicative function distributes over convolution (http://planetmath.org/PropertyOfCompletelyMultiplicativeFunctions), (f1)*(fμ)=fε. Note that, for all natural numbersMathworldPlanetmath n, f(n)1(n)=f(n)1=f(n) and f(n)ε(n)=ε(n). Thus, f*(fμ)=ε. It follows that fμ is the convolution inverse of f. ∎

Title formula for the convolution inverse of a completely multiplicative function
Canonical name FormulaForTheConvolutionInverseOfACompletelyMultiplicativeFunction
Date of creation 2013-03-22 16:55:09
Last modified on 2013-03-22 16:55:09
Owner Wkbj79 (1863)
Last modified by Wkbj79 (1863)
Numerical id 5
Author Wkbj79 (1863)
Entry type Corollary
Classification msc 11A25
Related topic CriterionForAMultiplicativeFunctionToBeCompletelyMultiplicative